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1. Introduction. The motivation of the present investigation was the conviction
that a differential geometric analysis of such physical phenomena as heat conduction
in a homogeneous medium and electrical charge distribution on closed conductors
should yield interesting quantitative geometric interpretations. Although the study
has been somewhat rudimentary, the results have been, in the author's opinion, of
sufficient interest to warrant extending them to their mathematical analogues in n-dimen-
sional Euclidean space. For the sake of elegance of presentation, the three-dimensional
results will appear as specializations of the n-dimensional theory.

Let <t>, denote single-valued point functions of class C2 in a domain D of a Euclidean
space Rn of n-dimensions. Let F„_i denote the hypersurface on which 4> is constant
which passes through a given point P of D. Let the family of such hypersurfaces which
pass through points of D be denoted by F. Let a denote arc length of the orthogonal
trajectory T of F at P, the positive and negative senses of <r along T being taken to be
those in which <j> decreases and increases, respectively. The positive function fi defined
by the relation:

0 = —dti>/d<r (1-1)

will be called the "gauge function" of F at P. A locus of points on F„_! at which 0 has
a constant value is an n — 2 dimensional variety Fn_2 which will be called an "isogauge"
of F„_i . An isogauge of F„_i with respect to F is, in general, an n — 2 dimensional
variety. It can be n — 1 dimensional only if it coincides with F„_i . In such a case, F
is a family of concentric hyperspheres, each F„_i being defined by a constant value of
a differentiable function of the radius.

Let M denote the mean curvature of F„_i at P, and let p and KT denote the unit
principal normal and curvature, respectively, of T at P. Let A\f/, A,\p denote the Laplacians
of with respect to Rn and F„_x respectively. The following theorems will be proved.

Theorem 1. The relation which exists between the two Laplacians A\p, is given by

H ^ + A,* - Krp Vt, (1.2)
OCT 0(T

in which p-w is the 'projection of the gradient of \f/ on the principal normal of T at P.

*Received April 29, 1957; revised manuscript received September 30, 1957.
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Corollary (1.1). If is harmonic

Af = j-(lnO), (1.3)
a<r

in which = —d<t>/dtx, and M is the mean curvature of Vn-X at P (a result due to H. Weyl
[5, p. 181]).

Theorem 2. Let r denote the orthogonal trajectory on F„_x at P of the family of isogauges
of F„_! , and let s denote its arc length. The principal normal p of T at P is tangent to r,
and the curvature of T at P is given by the relation

Kt = £( Inn), (1.4)

An application to steady-state heat flow may be described as follows. Let F be a
family of isothermal surfaces with respect to heat flow in a homogeneous isotropic
medium in ordinary space. The fundamental hypothesis in steady-state heat flow states
that heat flows orthogonally across the isothermal surfaces at a rate proportional to
— d(j>/d<r, in which <£ denotes temperature. It follows that Corollary (1.1) and Theorem 2,
in combination, yield the following interesting result.

Theorem 3. In the case of a steady-state heat flow in a homogeneous isotropic medium
the ratio of the rates of flow at any two points P0 , P j of the medium is given by the relation

Oo/fli = exp (-£ Mda + J ' Kt da), (1.5)

in which the first integral is along the arc of T from P0 to the point P of intersection of T
with the isothermal surface which passes through Px and the second is along the arc of r
from P to the intersection Q, of r with the "isogauge" which passes through Pi .

It is known that on a closed charged conductor S0 of class C2 the density S of charge
at a point P0 of S0 , if no other charges than that on the conductor are present, is pro-
portional to {—d<j>/da) o . From corollary (1.1) it follows that 5 is given by the relation

5 = fcfij exp f — M da, (1.6)
J <T0

in which U is the value of the gauge function at the point Pi to which <jx corresponds, and the
integration is from P0 to Pi along T.

It is known [4, p. 191] that electrical charge placed on an ellipsoidal conductor E0
becomes distributed so that its density at a point P0 of E0 is proportional to the "sup-
porting function" of E0 at P0, that is, the distance h0 from the center of E0 to the tangent
plane to E0 at P0 ■ The equipotential surfaces induced by the charged ellipsoid are
confocal ellipsoids. Let E denote an equipotential ellipsoid whose potential is given
by <t> — c. At points P0 , P of E0 , E, respectively, the gauge functions are given by

J20 = Wo , = hh, (1.7)
in which k0 , ke are constants, and fi0 is proportional to the density of charge of E0 at P.
On putting E0 , E in the roles of Sn , S for interpretation of (1.6) relative to confocal
ellipsoids and making use of (1.7), the following relation is obtained.
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mh0/h = exp — M da^j, (1.8)

in which m = k0/lcc is a constant which corresponds to the selection E0 , E.
The simple yet fundamental role of the "supporting function" in characterizing

physical phenomena associated with confocal ellipsoids suggests its usefulness in a
general study of isothermal surfaces. Such a study is presented in the present paper in
which use is made of the supporting function together with an associated "natural"
coordinate system. The representation employed may be described as follows. Let a
one-parameter family of surfaces of class C" be defined by a functional relation,

h = h(d,u>,<t>), <t> = constant, (1.9)

in which relative to a point P(0, co, <f>) the numbers h, 8, a>, <£ have the following meanings.
One surface S on which </> is constant passes through P. The numbers h, 6, co are spherical
coordinates, with respect to some fixed rectangular cartesian coordinate frame, of the
foot of the perpendicular line from the origin to the tangent plane to S at P; that is
to say, h is the supporting function of S at P. A curve described by a point P as <t> varies,
but 6 and u are held fixed, is called a 0-curve. A curve is a </>-curve relative to F if, and
only if, at its points the tangent planes to F are parallel.

Let a system F of surfaces, not necessarily isothermal, be represented by an equation
of form (1.9). At a point P of a surface S of the system, let y denote the acute angle
between the normal to S at P and the tangent to the 0-curve at P, and let K denote
the curvature at P of the curve of section of S by that normal plane of S which contains
the tangent to the <£-curve at P. The following relations will be established

ht ~ = h33 + (K tan2 y)h\ , (1.10)da

hi \<t> + Mh3 + ^ = 0, (1.11)
0(T

where

hi = dh/dd, h-2 = dh/dhi, h3 — dh/dcj).

If 0 is a harmonic function, relations (1.10), (1.11) reduce to

h33 + hl(M + K tan2 7) = 0, ^ + Mh3 = 0. (1.12)
da

The coefficients of Eqs. (1.12) are geometric quantities whose values are independent of
the choice of coordinates. The quantity — l/h3 will be shown to be equal to the gauge function
0 of F at P. It follows that the first equation of (1.12) is equivalent to the following
first-order equation in <f> and 0

^2 + M + K tan2 7 = 0. (1.13)
o<p

This equation leads to the following integral equation which defines the difference
between the gauge functions at two points P0 , P, of a <£~curve

Qi — = — (M + K tan2 y) d<t>. (1-14)
J<t> o
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An interesting physical interpretation of (1.14) may be stated as follows.

Theorem 4. In steady-state heat flow through a homogeneous isotropic medium, the
difference between the rates of flow p0 , p, at points P0 , f\ , respectively of a flow line is
given by a relation of the form

Po - p, = k f* (M + K tan2 7) d4>, (1.15)J*.
in which k is a positive constant and 4>a, <t> 1 are temperatures at P0, P1 respectively, and the
integration is along the flow line.

The results stated above may be specialized to obtain the analogous geometric
interpretations of physical phenomena applicable to the systems of cylinders which
constitute the integral surfaces of the Laplace equation in two variables.

2. The Laplacians A and of a function r with respect to the surfaces <j> = constant.
In a domain D of a Euclidean space R„ let <t>, ̂ denote single-valued point functions of
class C\ let the family F of hypersurfaces Vn-X (introduced in Sec. 1) be coordinate
hypersurfaces x" = <t> = c whose orthogonal trajectories T are the ^"-curves of R„ .
Let F„_! be referred to an orthogonal system of coordinate curves. The fundamental
metric then assumes the form1

ds1 = g„(dxy = gnn(dxy + ga«{dx")\ (2.1)

Theorem 1 will be proved and some specializations will be noted in this section.
The Laplacian of a function \p with respect to R„ at P is given by the well-known

formula

in which the functions g" are defined by relations of the form

a"g» = = (°' k = 1 (2.3)
Ll, k 9^ i

and the functions T- are the Christoffel functions of the second kind defined by the
relations

r wra.«-£fe + ̂ s-%i)- <2-">
In view of the conditions of orthogonality

gu =0, iV j (2.5)

and Eqs. (2.3) and (2.4), Eq. (2.2) assumes the form

4# - 9" 0 - rc g - ,-n. - rrz % + m
'Greek indices will have the range 1,2,.. ,,n-l. Latin indices (except n) will have the range 1,2,..

Repeated indices in a term denote the usual summation convention over the respective ranges.
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in which is defined by

"-stt-rS) <2'7)
and the Christoffel functions are given by the formulas

nn ~

r:n = g""[nn,"] = 2 T& '

n, = rw,»] = (2.8)

r„I = rN,«] = %
2 (3 a:

The Laplacian of 4< may, therefore, be written in the form

. , flV , <rnf)a° dgaa d\p >
A,A=!7 9 r""^+ ^ (2"9)

The following relations will be established

ff"y dgaa dj M dip ,
2 dx" dx" " M d<r ' (210)

^ - K,p - It f4), (2.11)do- dx \dx dx/

in which p' denotes the contravariant components of the unit principal normal of T at P.
Let f denote the unit normal to Fn_i at P, and let f* denote its contravariant com-

ponents. The following equations are well known [1, p. 32]

M = -div f = T7, ̂ 7 (fgW2), (2.12)

in which g denotes the determinant whose element in row i and column j is gu .
Equations (2.12) will be used to establish (2.10). Since f is the unit tangent to T

at P, its contravariant components are defined by

l'-&/(>S£T(2-13)
On substituting these values in (2.12) we find

— M = o~1/2 ^ =  - - • (2 14")
dx" \g,J 2gaa(gnn)'/2 dxn

Moreover, since da' = gnu(dx")2, we have

d\[/ _ dip dx" _ _]/2 dip
da dx" da dx" (2.15)

Since g" = 1 /gu (i = 1, 2, • • • , n), Eq. (2.10) is an obvious consequence of (2.14) and
(2.15).
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The components KTp' of the first curvature vector of T at P are defined by the
intrinsic derivative of f along T. Thus, we have

ktP' = r:,r\ r = «: / . (2.16)
Evaluation of the intrinsic derivative yields

Ktp• = r:. / gic - (IS + r*nn) /' ' ' (2.17)

 dgnn n.
2gL dx" ^ gn„

In view of (2.8) it follows from (2.17) that Krp' d\p/dx' is given by

J/~ i ~ y   „„ y Oil/ /ft . Q\
Krp dxi-KrP —~g rn„—. (2.18)

Again making use of (2.8), simple calculations yield the following equations

<?V __ nn , 1 dgn" dj
da2 9 (dx")2 2 dx" dx"

nn d2t _ (g""y dQnn W _ n"n( _ r» <ty\
~9 (dx")2 2 dx" dx" 9 \(dx")2 "" dx")-

(2.19)

By subtracting the members of (2.18) from the corresponding members of (2.19), Eq.
(2.11) is obtained. Finally, in view of Eqs. (2.10) and (2.11), which are now established,
Eq. (2.9) may be written in the form of the relation which constitutes Theorem 1 in
which p-denotes p" d\p/dx'.

In the special case in which = <£, since p" — 0 and x" is independent of
xl, x2, ■ ■ • , x"~\ the scalars A,4> and p' d<t>/dx' vanish. Therefore we have

A = (2.20)
da ocr

Corollary 1.1 is an obvious consequence of (2.20).
In case the system of hypersurfaces <j> — x" = constant are parallel, x" may be taken

to be the arc a measured from x = 0 along a normal. It follows that

<?.„ = l = gnn, r;„ = o, (* = 1,2 ,•••,»).

In this case the relation between the Laplacians of <f> becomes

~ A,* = ps - M&- (2.21)
o<7 oa

In particular, for a in a surface, relative to a system of curves geodesically parallel
[1, p. 57] to Fi , (2.21) reduces to

2+^' <2-22>
in which K is the curvature of F, at P and s is arc length of Vt [3].
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3. Proof of Theorem 2. On substituting from (2.8) into (2.17), the components of
the first curvature vector of T at P are found to be given by

T7~ „ a _a« $(hl fi) n n /n xktp = 9 ~^nr > p = °> (3-i)dx
in which (g„„)~1/2 = J2 = —d<f>/d<r. On forming the inner product of the members of
(3.1) with gafi dxp/ds in which dxp/ds denotes the components the following relation
is obtained

Kt = 3(ln Q)/ds, (3.2)
in which s denotes the arc length of the orthogonal trajectory on F„_j at P of the family
of isogauges of V„-x . This completes the proof of Theorem 2.

4. The Laplacian A<j> in terms of the supporting function. Let h denote the support-
ing function of a one-parameter family of surfaces of class C2 defined by a functional
relation of form (1.9). The quantities 6, co, 4> defined in association with (1.9) will serve
here as curvilinear coordinates of the point P of any surface. To express the Laplacian
A<t> in terms of the partial derivatives of h with respect to 8, co, <j>, the components of
the fundamental metric tensors </,, and g" must first be calculated. For this purpose we
make use of the definitions of h, 6, co, <f> in terms of a fixed auxiliary rectangular cartesian
coordinate system (x, y, z). Since (6, co, 4>) are curvilinear coordinates of the contact
point P of a tangent plane to a <t> = constant surface S, the rectangular cartesian coordi-
nates (x, y, z) of P satisfy the following three equations. The first of these equations is
the equation of the tangent plane at P, and the next two are obtained from it by partial
differentiation with respect to 6 and oo, respectively

x sin a; cos 6 + y sin u sin 0 + 2 cos co = h,

— x sin co sin 6 + 2/ sin co cos 6 = , (4.1)

x cos co cos 6 + y cos co sin 6 — z sin co = h2 ,

in which h2 = dh/dw, hx = dh/dd.
The following set of equations, which has the same solution as that of (4.1) and

whose coefficients of x, y, z are functions solely of 6, is obtained by combining Eqs.
(4.1) in the ways indicated by the forms of the right members.

x cos d + y sin 8 = h sin co + cos co,

— a; sin 8 + y cos 8 = hi csc co, (4.2)

z = h cos a — h2 sin co.

The solution of (4.2) is given by

x — (Ji sin co -j- h2 cos co) cos 8 — ft, csc u sin 8,

y = (h sin co + h2 cos co) sin 8 + hy csc co cos 8, (4.3)

z = h cos co — h2 sin co.

On calculating the g's by making use of the relations
dxh f").7'''

d" = S af7 ' *>*=1.2,3 (4.4)
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in which x' — x, x2 = y, x3 = z,ul — 8, u2 — co, u3 = <f>, the following values are obtained

gu = e2 csc2 co + f, gu = f(g + e csc2 co),

922 = g2 + f csc2 co, gls = — (jh23 + eh13 csc2 co), ^

032 = ~{gh23 + fh 13 CSC2 aj), ^33 = /l| + /l23 -J- CSC2 CO,

G = | fir,,- | = fc32ff2 csc2 co, #2 = (e9 - f)2,

in which e, /, 3 are defined by the equations

e = —(Asin2co + h2 coscosinco + hn),

f h\ cot co h\2 , g — (h ~f~ ̂ 22) j

the subscripts 1, 2, 3 of h denoting partial derivatives with respect to 8, co, <f>, respectively.
The functions e, f, g are actually the coefficients of the second fundamental form of S,

as may be seen by direct calculations of these coefficients. Let x, xa , xaf denote the
vectors whose ith components are x', dx'/dua, d2x'/duadv? respectively. From the
definition of the second fundamental form of S together with some orthogonality rela-
tions [6, pp. 92-94] it follows that the coefficients of the form are given by the set of
determinant relations

daf> = (Xa0*jX2)/| g*$ |I/2» a, /3 = 1,2 (4.6)

in which the g's are defined in (4.5).
The following expressions for the components of the vectors x, , x2 , xu , x12 , x22

are obtained by differentiating Eqs. (4.3).

x\ = e csc co sin 8 — f cos co cos 9,

x\ = f csc co sin 9 — g cos co cos 9,

X2 = — e csc co cos 9 — / cos co sin 9,

xl — — g cos co sin 9 / csc co cos 0,

x\ = / sin co,

xl — g sin co,

£11 = (e csc c0 — /1 cosco) cos 0 + (eY csc co + / cos co) sin 0,

xh — (—et csc co — / cos co) cos 0 + (e csc co — /1 cos co) sin 0, (4.7)

Z11 - /1 sin co,

— (/ csc co — fif, cos co) cos 0 + (/1 csc co + g cos co) sin 0,

xh = (— fir cos co — /1 csc co) cos 0 + (/ csc co — fir, cos co) sin 9,

#21 = 91 sni co,

£22 = (g sin co — Qi cos w) cos 8 + (/2 csc co — / csc co cot co) sin 9,

£22 = (/ csc co cot co — /2 csc co) cos 0 + (fir sin co — g2 cos co) sin 8,

x\i = fir2 sin co + g cos co.
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The three-rowed determinants which appear in (4.6) may now be written in the form

x\p e csc co sin 9 / cos co cos 6 / csc co sin 6 — g cos co cos 6

(xojSXiX2) = x2aB —e csc co cos 6 — / cos co sin 6 —g cos co sin 6 — / csc co cos 6 , (4.8)

x3c,p / sin co g sin co

in which x'a0 (i = 1, 2, 3) are given by (4.7).
After transforming this determinant by elementary transformations on the rows

(the transformations being indicated by the transformed elements of the first column),
the following form is assumed

(x„^x,x2) (4.9)

xip+x3a/l cot co cos 0+(£a0+xt/i cot co sin 6) tan 0 0 0

xlp+xlp cot co sin 0 — e csc co cos 8 — / csc co cos 6

x3a0 / sin co ^ sin co

In view of Eqs. (4.5), (4.7), and (4.9), simple calculations yield the values e, f, g
for the coefficients du , d12 , d22 of the second fundamental form, respectively.

The components of the contravariant metric tensor, calculated according to the
definition

g" — (cofactor of gix)/G,

are found to have the following values

gu = If + g2 sin2 co + {ghl3 - fh23)2/hl]/H2,

g2 = [(eh23 - fh13)(gh13 - fh23)/hl — f(e + g sin2 co)]///2, ^ ^

g13 = (0*1 s - fh23)/Hhl , g22 = [e2 + f sin2 co + (fh13 - eh23)2/h\}/H\

g23 = (eh23 - fhl3)/Hhl , g33 = 1 /hi .

Since the absolute value of d#/d<r is equal to the length of the gradient of </>, where
the components of the gradient of <t> are <5*- , we have the relations

(V<^>)2 = g"h\b3 = g33 = 1 /hi . (4.11)

For a system of closed surfaces 0 = constant, according to the convention adopted for
the sign of a, the direction of increasing a is outward. Therefore, if the origin is an interior
point of the system, h increases as <r increases, and it follows that

d<t>/dc = \/h3 = -0. (4.12)

The components y of the unit normal to the surface S(<f> = c) at P are given by

V = h3g<3. (4.13)

From (4.12) and (4.13) it follows that

3--b£--s((4'l4)
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in which u — 6, u2 = co, u = <f>. On substituting the values of the g's as given by (4.10)
into (4.14) and combining the result with (4.12) to evaluate the expression for A0 given
by (2.20) one readily obtains the relation

-hi A4> = Mhl + h33 + {eh\3 - 2fhiaK + ghl)/H. (4.15)

In view of (4.14), Eq. (2.20) may now be written in the form

hi A<t> + Mhs + = 0 (4.16)
U(T

which appears in Sec. 1 as (1.11).
The derivation of (1.10) proceeds as follows. Consider a point P' on the orthogonal

trajectory T of S at P whose coordinates are (0 + dd, u> + du, <f> + d<$>). As P' varies
along T tending toward P the following limiting relations are approached

du/dd = g23/g13, dt/da, = g33/g23, (4.17)

since the contravariant components of the gradient of <j> are given by g'3. Let Q denote
the point of intersection of S with the <£-curve passing through P'. The coordinates of
Q are (6 + dd, u -f dw, <j>). It is now clear that the limit of the direction of QP as P'
and Q tend to P is given by the first equation of (4.17). It is clear from the definitions
of P' and Q relative to P that the limit of the direction of QP is the direction at P of
the line of intersection of the tangent plane to S at P with the normal plane to S which
contains the tangent to the <£-curve at P. The normal curvature of >S at P which cor-
responds to this direction will be denoted by K. It follows that K is given by the relation

K = (e(<713)2 + 2/01V3 + g(g2y)/ga,ga3g'3. (4.18)

On substituting from (4.4) into (4.12) we find

K = (eht, - 2fh13h23 + gh\3)/H[hl3 + h\3 csc2 «]. (4.19)

Let 7 denote the acute angle between the normal to S at P and the tangent to the
</>-curve at P. The covariant components f ,• of the unit normal are given by

= W3)I/2. (4.20)

The contravariant components £ of the unit tangent to the <£-curve at P are defined by

r = 5i/(g**Y/2. (4.21)
It follows that cos y is given by the relation

cos■y = = 1/(g33g^s)1/2 = ~h3/(hl + ^23 + csc2oj)1/2. (4.22)

Therefore tan2 y is given by the relation

tan2 y = (>& + h\3 csc2 w)/hl . (4.23)

In view of this and (4.19), relation (4.15) may be written in the form

— h3 Acf> = Mhl ^33 "I- h3K tan27 (4.24)

which, in view of (4.16), is equivalent to (1.10).
If <t> is a harmonic function, Eqs. (4.16) and (4.24) assume the forms
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+ Mh3 = 0, (4.25)

h33 + (M + K tan2 y)h% = 0, (4.26)

respectively.
In view of (4.12), Eq. (4.26) can be written in the form

^ + M + K tan2 y = 0. (4.27)
d<t>

Equation (1.14) and Theorem 4 (stated in Sec. 1) now follow immediately.
5. The equation of Laplace in two variables. Consider a family F of <£ = constant

cylinders whose generators are parallel to a fixed axis, say the z-axis. The supporting
function of a contact point P of a tangent plane to the <j> = constant cylinder is inde-
pendent of the position of P on the generator. The only admissible value of co is, therefore,
7r/2 and the number triple (9, 7r/2, <f>) determines a generator rather than .a point of
the generator. In order to apply results of Sec. 4 to this case it will be convenient to
determine a point P of a generator by specifying its z coordinate. Thus we augment
the original curvilinear coordinates 9, 4> by the coordinate u2 = z.

The auxiliary rectangular coordinates of P satisfy the set of equations

x cos 6 + y sin 6 = h,
(.5.1)

—x sin d + y cos 9 = ,

in which h = h(d, cf>), hi = dh/dd, h2 = dh/dz, h3 = dh/d<j>. The solution (x, y) of (5.1)
is given by

x = h cos 9 — hx sin 9, ^ 2)

y = hsin 6 + ^ cos 9.

The g's of the metric tensor in terms of the coordinates w1 = 9, u = z, u3 — <t>, may
be easily calculated. For this purpose, the following values of the partial derivatives
are needed.

= ~(h + /in) sin 9, J^r = (h + hn) cos 9, ^ = 9,

^ = 0, -ft = 0, ft = 1, (5-3)du du du

ft = h3 cos 6 — hu sin 9, ft = ha sin 9 + hl3 cos 6, ft = 0.
OU OU OU

Since the g's are defined in terms of these partial derivatives by a set of equations of
form (4.2) in which xl = x, x2 = y, x3 — z, the following values are readily obtained

Q13 = (h hn)h\3 , g23 = 0, g33 — h3 -\- hi3 , ^

011 = (h + hn)2, 012 = 0, <722 = 1-

The quantity (h + hn)2 will be shown to be the square of the radius of curvature
of the curve C of normal section of a <£ = constant cylinder. For this purpose, let a
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denote the angle of inclination of the tangent to C at P with respect to the x-axis. Then
a = 8 + 7r/2. From the definition of curvature K of C, we have

K = da/ds = dd/ds,
where differentiation is with respect to arc length of C at P. On differentiating (5.2)
with respect to s we find

= —(h + hn) sin , ~T = + hu) cos 6^j-- (5.5)ds as ds ds

Squaring (5.5), and adding yields

1 = {h + )' = K\h + hn)\

This is what was to be shown, since r2 is by definition l/K2.
It will be shown that the necessary and sufficient condition that <t> be a solution of

the equation of Laplace is that the function h be a solution of the equation

r % = p2 + q2' ^5'6^

in which r is the radius of curvature of C at P, and p and q are defined by the relations

dh dp
v = T4>' q = de-

li the origin of rectangular coordinates is an interior point of the system of <f> =
constant cylinders, Eq. (4.12) holds. Recalling that the positive sense of <r is that in
which $ decreases, and that the gauge function diminishes as P moves along a flow
line (a increasing) we find

d~t= ~e? = ~h{h;1) <0> u>0- (5-7)

A relation of form (4.14) holds for a system of <t> = constant surfaces, independently of
the choice of the coordinates ux, u, and consequently, in the present coordinates u = 6,
u = z. Thus

~h* d? = lr= h3(-hsigl3 + hs3g33)■ (5-8)

But in view of (4.16), dh3/d<r may be replaced by —Mh3 if and only if <£ is harmonic.
On making this replacement and dividing by h3 , Eq. (5.8) assumes the form

-h3 ^5 = —M = W3 + W3. (5.9)
oa

From (5.7), M is found to be negative. The mean curvature M which is the sum of the
principal curvatures of the cylinder <t> = constant at P, is given by the relation

M = — 1/r, (5.10)
since one of the principal curvatures is the curvature of C at P and the other is zero,
the curvature of the generator at P.
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The contravariant components g" are defined by the relations

g" = (cofactor of git)/\ g(i\, i, j = 1, 2, 3.

In view of (5.4) the determinant of the g's is given by the equation

rJ 0 rh 13

0 1 0
2 I 1,2

g<i =

rh13 0 hi + hi 3

It follows that g13, g33 are given by the relations

gu = -KJrhl , g33 = 1 /hi . (5.11)
On substituting from (5.10) and (5.11) into (5.9) and clearing, the resulting equation is

rh33 = (hi + h"13), (5.12)

which is (5.6), since h3 = dh/d<f> = p, h13 = dp/66, h33 = dp/d<t>.
The theorems stated in the introduction can be easily specialized for the two dimen-

sional case. The statements of these two dimensional theorems will be omitted here.
Additional results which are not specializations of the theorems hereto proved, but

whose proofs involve only routine calculations will be presented here (without proof).
Theorem 5.1. The ratio of the gauge functions at points P0 , P of a <j>-curve is given by

the integral

Qo/n = exp [ (K2 + K2T)W2 ds (5.13)
J a o

in which the integration is with respect to arc length of the <t>-curve from P0 to P, and K, KT
are the curvatures at P of the <f> = constant curve (isothermal curve) at P and the orthogonal
trajectory of the cjj-curves at P, respectively.

Theorem 5.2. If the density of charge at each point P of the curve C0 of a clossd conductor
is proportional to a constant power of the supporting function h of P, then the exponent of
the power is unity and the curve C0 is an ellipse, and the equipotential curves induced by
the distribution of charge on C0 are ellipses confocal with C0 ■
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