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where a, b are constants. This is an equation of the form (1), with a positive w2(t) of
period t and of mean-value a, if 0 < b < a. Since (6) reduces to m = a — b and M =
a + b in this case, it is seen from (5) that

1 — t?2 = 4c/(l + c)2, where c = b/a.

Hence, condition (9) becomes a < Qcn/ (1 + c).
Since c = b/a, the latter inequality can be written in the form

a/b < 4Q2/(a + b)2, where 0 < b < a. (20)

Consequently, Mathieu's equation (19) is stable (and, what is more, "disconjugate")
whenever its parameters a, b satisfy the conditions (20), where Q is the value (10),
defined by (16) and (17).
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A HEAT CONDUCTION PROBLEM
INVOLVING A SPECIFIED MOVING BOUNDARY*

By R. E. GIBSON (Imperial College, London)

1. Introduction. Physical problems governed by an equation of heat conduction
type occasionally arise which require a condition to be satisfied on a boundary moving
at a specified rate. In the problems with which we are concerned the movement of the
boundary is generated by the accretion there of new material and not by deformation
of the medium. Typical examples are: the dissipation of excess pore water pressure in
a clay layer upon which fresh material is being deposited [1], and the type of thermal
problem considered by Benfield [2] relating to the theory of the formation of the earth
on the dust cloud hypothesis. The moving boundary is also a feature of thermal problems
where a change in state of the conducting medium occurs [3]. Here, the motion of the
boundary separating the phases is not given and must be determined as part of the
solution. We can hope, therefore, that our problems, where the motion of the boundary
is given, will prove to be less intransigent.

While working on one-dimensional problems of this type, we found that exact solu-
tions could be obtained in two cases, namely, when the rate of movement of the boundary
is proportional to f1/8 and when it is constant. Although in few actual problems may
these conditions be realized, we believe our results to be of interest since it appears
unlikely that closed solutions can be obtained for an arbitrary motion of the boundary.

2. Problem with spherical symmetry. We consider first a case with spherical
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symmetry. For < < 0 in 0 < r < o° the temperature is constant, v(r, t) = v0 . At t = 0
the formation of a sphere begins, within which an homogeneous rate of heat production
A(t) per unit volume occurs. Additional material, at a temperature t>0 , arriving on the
surface of the sphere also participates in the generation of heat at a rate A(t), the current
radius of the sphere being li{t).

The appropriate equation for the temperature is

\ dv Id / , dtA A{t) „ < . p(A , .
Kdt~ r'drK dr)+ K ' <D

where the constants k and K are respectively the diffusivity and thermal conductivity
of the medium. The problem is to determine v(r, t) for t > 0 subject to the conditions

t] = Vo , (2)

| [0, t\ = 0. (3)

3. Separation of variables. If in (1) we take as new variables u = r(v — v0), ( =
r/R(t) we obtain

d u I kA tp3   r>2 tPP' ^ tA\
K~d? + i[iR - R ~dt~m Tr (4)

where the prime denotes differentiation with regard to t. The boundary of the Sphere is
now "fixed" at { = 1. We now investigate the conditions for which

u = j(t)G(£) + £h(t) (5)
is a solution of (4). This requires, firstly, that

4? A{t) = R~\h'R - hR'). (6)

The variables / and G are found to be separable only if R = ctl/2, and then (7)

where X is an arbitrary constant. From the second of (8)

/ = Dt\ (9)
where D is an arbitrary constant. Now, in terms of the new variables the boundary
conditions (2) and (3) are

Kt)G( 1) + Kt) = 0, (10)
/«)(?(0) = 0. (11)

From (9) and (11) we have

and therefore, from (5)

h{t) = -DG(\)tx

u = Dt"[G(0 - {0(1)]. (12)
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The constant J) is found from (6) to be given by

j*A(0 = -DG(l)?-3/\\ - i). (13)

The rate of heat production is therefore restricted to the form

A(t) = A of, s > — 1. (14)

From (12)—(14) we then have
kA0 cCW2t

u = K (« + 1) C 0(1) J
The function 0 is now found from (8), one of the arbitrary constants arising being
determined from (11). Finally, we arrive at the following expression for the temperature,

, ka0 r1
V = Vo + K (« + 1)

„ / 5 3 S_\
1 '\S + 2 ' 2 ' 4Kt) 1 /r2 c2\

7 5 3 c2 \ ^ 4 W J
1 \ 2 ' 2 ' 4k/

(15)

which expression may be reduced to a finite combination of elementary functions if
either s or (s + £) is an integer [4], In particular, for a constant rate of heat generation
(s = 0)

, kA0 (c2t - r2\ ,1R.
v = vo + —lf JTV ' (16)K

4. Integral equation. In the following section we derive a solution to (1), valid
for an arbitrary rate of heat generation, when the motion of the boundary is

R(t) = nt.
We take

iA(t) = KF'(t)
and consider a solution of (1) of the type

v = v0 + F(t)

— r~'r,/2 [ p~'g(p) [exp — (r — p)2/4kI — exp — (r + p)2/4»c/] dp.
Jo

(17)

Apart from a constant factor the third term represents the temperature at (r, t) due
to an initial temperature g(r) in the region r > 0 when heat generation is zero every-
where. Since the sphere vanishes at t = 0 no initial condition on the temperature need
be satisfied, and we are therefore at liberty to regard g as an arbitrary function which
must be chosen so that

v[R(t), /] = v0 , ( > 0

and this requirement is met with if g satisfies

*"«)«')<"■ J7, - [ "f if, - 6 *>■ <18)
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In the special case* when R = nt that part of the kernel involving the hyperbolic function
may be absorbed in the unknown function. The following changes of variable

p2 = t = 1/4 K-p

then reduce (18) to the form

where

Proceeding formally from (19) we find that

S<p) - §r. cosech p-"f(jL) exp (j^ + p'p) <lp

which, together with (17), leads to an expression for the temperature satisfying the
governing equation (1) and the boundary conditions (2) and (3). In particular, when
heat generation takes place at a constant rate

F = Aot/K

the temperature is given by

, A0 2 (k Y/2 r2
-+K L'-^W eXp-47, m

■[ psinh^fecoth2f-'} exp - 5^rfp]
S. One dimensional problems. Problems one-dimensional in some other coordinate

system may be treated along lines similar to those discussed in the preceding sections.
For example, the temperature within an infinite cylinder of radius R = ctl/2, when

heat is generated according to (14), is found to be

kA0
V = V0 + 

J _ ,y,(« + 2,l,rV4«0 _l(t_ £\"]
L iFAs + 2, 1, c2/4k) 4U t J JK{s + 1)

while for the conditions considered in Sec. 4 the temperature is given by

v = tf0 + F{t)

i r2 r r p J i \ /o(2^) ( t*2 , 2 p2 \ j ,-4^7iexp-47tJo LpF[l^J-Mexp{T67p + pp ~47t)dpdp'
Io\2 J

wherein

F(t) = A(t) dr.

*The solution of Sec. 3 can also be attained directly from (18) after suitable changes of variable
and the use of the convolution theorem.
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6. Numerical evaluation. In the spherical problem the quantities of physical
importance are the temperature at the centre and the gradient at the boundary. When
heat is generated at a constant rate and the radius increases according to (7), these
quantities are found directly from (16). We note, firstly, that the temperature difference
[i>(0, t) — v0] is a constant fraction 1/(1 + 6kc~2) of the same difference if no leakage of
heat across the boundary is allowed, and, secondly, as time goes on the temperature
gradient at the boundary increases without limit.

On the other hand when R = fit this gradient approaches an asymptotic value
—kAo/hK which may be seen by considering the behaviour of

flo '] = f ~ 1 ~ irw^T1/2 e~T/i fo y3e"'cosech yTl/2~dy

as

T{= St/K) - CO.

The infinite integral has been evaluated numerically along the lines suggested by Goodwin
[5], and the relation between the gradient and the time factor T is shown in Fig. 1.

mK6 v[R,t]
kA>

i.o -■
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Fig. 1. Variation of boundary temperature gradient with time. The dashed line represents
the asymptotic value.

Bibliography

1. K. Terzaghi, Erdbaumechanik auf boden physikalischer Grundlage, Franz Deuticke, Leipzig, p. 175
1924

2. A. E. Benfield, The temperature in an accreting medium with heat generation, Quart. Appl. Math. 7,
436-439 (1950)

3. See, for example, I. Kolodner, Free boundary problem for the heat equation with application to problems
of change of phase, Communs. Pure and Appl. Math. 9, 1-31 (1956)

4. A. Erdfelyi, Monatsh. Math. Phys. 46, 1-9 (1937)
5. E. T. Goodwin, The evaluation of integrals of the form f-xf(x)e~'' dx, Proc. Cambridge Phil. Soc.

45, 241 (1949)


