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A GENERALIZATION OF LATTA'S METHOD FOR THE SOLUTION OF
INTEGRAL EQUATIONS*

Br MARVIN SHINBROT (Lockheed Aircraft Corporation)

I. Introduction. The integral equation

<p(x) = J k(x — t)f(t) dt, a < x < b (1.1)

with a and b finite arises in many applications. As examples, we mention the problem
of optimization of filters having a finite memory [1] and the problem of diffraction
through a slit [2, 3]. In the first of these problems, the kernel represents the autocorrela-
tion of the inputs to the filter; in the second, k(x) = H„\ | x |), the first Hankel function.

Its importance notwithstanding, no general solution of (1.1) is known; with but two
exceptions, only special methods exist for application to special kernels. The first excep-
tion is the method developed not long ago by Latta [4, 5]. The second—which is now
subsumed under Latta's method—applies to the conceptually trivial case when the
kernel has a rational Fourier transform [1],

Latta's method can be applied in the circumstance that k{x) satisfies a linear differ-
ential equation (of any order) with linear coefficients. This restriction is still very far
from being moderate, of course, and since no general solution of (1.1) appears to be
forthcoming, it appears worthwhile to see whether there are other integral equations
having the form of (1.1) which can be reduced to one of Latta's type.

In a recent paper [6], Pearson considered (1.1) with

k(x) = p(x) log | x | + q(x),

where p and q were polynomials. Although Pearson's method has no apparent connection
with Latta's, the fact that log | x | is a Latta kernel leads one to consider kernels of the
form

, k(x) = p(x)j(x) + q(x), (1.2)

where j satisfies a differential equation while, as in [(>], p and q are polynomials. It is
to consideration of this case that the present paper is devoted.

*Received October 23, 1957. This paper presents work done while the author was employed by the
National Advisory Committee for Aeronautics.
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One remark about (1.2). Although the restriction of p and q to polynomials seems
rather severe, the situation is not as bad as it looks. The range of the argument (x — t)
of k in (1.1) is the finite interval (a — b, b — a). Consequently, just so long as k(x) is
given by (1.2) with p and q continuous, the kernel can be successfully approximated
by (1.2) with p and q polynomials. Thus, given, say, a singular kernel fc, if the singularity
alone is of Latta's type (e.g., log | x | or | x |"_1 or, for that matter, #"'(| x |)), the
equation can be solved approximately by writing k in the form (1.2) where j contains
the singularity and by approximating p and q by polynomials.

The paper begins with a brief discussion of the reduction of an equation with a
kernel (1.2) to an equation with a Latta kernel. In the rest of the paper, three examples
are worked out: the first two have logarithmic singularities; the last has the singularity
I - I"1-

2. The idea of the method. Consider now (1.1) with k(x) as in (1.2). It will be
convenient to follow Latta and use operational notation—thus, we set

f k(x — t)f(t) dt = A/
J a

£ j(x - t)f(t) dt = r/,

where the kernel of V] is the j of (1.2).
Now, the polynomial q of (1.2) is immaterial to the analysis; if q(x) = E we

have

f q(x — t)j(t) dt = 9' f (® ~ 07(0 dt
J a J a

=

where the constants q* depend on the moments /' t"f(t) dt, v = 1, • • • , n of /. Thus, the
term involving q(x) can be incorporated into the function <p(x) of (1.1); after the resulting
equation has been solved for arbitrary values of the q* , the solution can be substituted
back into (1.1) to determine them. We may write, therefore, without loss of generality,

k(x) = p(x)j(x),

in place of (1.2).
Set p(x) = p„x". We then have

A/ = E Pn E (-l)'(")x-' f' j(x - t)t'f(t) dt

= ZPn E(-l){nV"'lV/. (2.1)

Now, Latta's condition that j(x) must satisfy a differential equation allows one to relate
Txf (and, as a consequence, Tx'f) to Tf by a linear differehtial equation. Using this fact,
one can derive from (2.1) a differential equation relating Tf and A/. However, A/ is
known by (1.1) to be equal to <p(x). Solving this differential equation between Tf and
A/ will thus result in an equation

t(x) = Tf (2.2)
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which must be satisfied if (1.1) is. The new equation (2.2) can then be solved by Latta's
method since its kernel, j, satisfies his assumptions.

This will now be illustrated by examples.
3. First example. For our first example, we set

k(x) = x log | x |. (3.1)

This kernel itself seems to be of Latta's type, since it satisfies a differential equation
(xk" — 1 = 0) of the appropriate kind. However, k(x) is non-singular; consequently,
we may expect that no solution will exist unless the function <p of (1.1) is properly chosen.
Since this fact violates a second assumption made in [4] and [5]—that there is a unique
solution—Latta's method cannot be applied directly. We have chosen (3.1) as our first
example in spite of the apparently complicating factor of possible non-existence of a
solution because of the simplicity of the corresponding relation between A/ and Tf.

To begin, consider (3.1). With the notation of (1.2), we have j(x) = log | x |, so that

(x — t)j'(x — t) — 1 = 0

(' = d/dx). As discussed in [5], this implies

T'xf = xT'f - mo , (3.2)

where mo is the zero order moment of /. Now, obviously,

A f = xTf — Txf.
Therefore,

A'/ = xT'f + Tf - T'xf

= T/ + mo ,

using (3.2). Thus, if / satisfies (1.1) with k{x) as in (3.1), it must also satisfy (2.2), where

\p = <p' — Ho . (3.3)

Equation (2.2) can be solved by Latta's method if <p{x) is a polynomial or an expo-
nential polynomial (<p is restricted to this class of functions in [4] and [5]) or, for general <p,
by Carleman's formula ([7]; see also [6]). As an example, we choose"^>(x) — x,b = —a = 1.
By (2.2) and (3.3), we then have to solve

17 = 1 - Mo • (3.4)

Since 1 — Mo is a constant, the solution, according to Carleman's formula, say, is

1 = 7^2 » - ^

Integrating, we can find mo from the equation

j>

_ Mo ~ 1
log 2
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Indeed,

_ 1
"° ~ 1 - log 2 '

and

(i - xT1/1
/ = 7r(l - log 2)

That this really is a solution can be verified by substitution into the integral equation.
4. Second example. Now, let

k(x) = (1 + ax) log | x |. (4.1)

Equation (1.1) with k(x) as in (4.1) and ip(x) = 1 was solved for small a by Pearson
in [6].

Here again we have j(x) = log | x |, so that (3.2) continues to hold. Also,

A/ = (1 + ax)Tf - aTxf,

so that

A'/ = (1 + ax)T'f + aTf - aT'xf

= r7 + aTj + a/x0 ,

using (3.2). Thus, in this case, / can only satisfy (1.1) if it also satisfies (2.2), where

xf/' + — <p' — ano ■ (4.2)

It remains, then, to solve (2.2), where \p is some solution of (4.2).
We now consider Pearson's example, setting <p(x) — 1, b = —a — 1, and solving

(1.1) for small a. Equation (4.2) gives

i{x) = — Mo + Ae~"

= (A — Ho) — Aax + 0(a),

where A is a constant.
Define /0(a:) by the equation

so that

(see (3.4, 5)). Of course,

r/o = 1, (4.3)

1 /•# 2\ —1/2^ = -^2(1-^

T'x/o = —J fa{x)dx

log 2 '

by (3.2), so that
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TxU = ^log 2 '

since xf0 is an odd function.
We wish to consider

17 = *
= (A — Mo) — Aax + 0(a2) (4.4)

= (A - Mn)r/0 - (Aa log 2) Fxfo + 0(aJ).

Since the equation Tf — yf/ has a unique solution [7] whose singularities can only be of
the form (1 — a;2)-1/a at worst [5], it follows that

/ = (A - *>)/„ - (Aa log 2)xf0 + 0[a2(l - a2)""2]

The constant A can now be evaluated by integrating (4.5). We obtain

dl-%Y + 0^'

so that
A = Mo(l — log 2) + 0(a)

and

/ = (1 - *T1/2[j + f (1 - log 2)x + 0(a2)].

To evaluate mo , recall that we must have

1 = A /
= (1 + ax)Tf — aTxf.

Now, (4.6) is equivalent to

/ = -(m„ log 2)/0 - (mo« log 2)(1 - log 2)x/0 + 0[a\ 1 - a:2)"1'2].

Hence,

17 = — (no log 2)r/0 - (mo« log 2)(i - log 2)rx/0 + 0(<*2)

= —mo log 2 — /xoa(l — log 2)x + 0(a)

by (4.3) and (4.4). Also,

Txf = -(no log 2)Tx/0 + 0(a)

= — fi0x + 0(a).

Therefore, (4.7) results in

1 = (1 + <*x)[ — Mo log 2 — Mo«(l — log 2)x] + noax + 0(a")

= —Mo log 2 + 0(a2),

(4.5)

(4.6)

(4.7)



420 NOTES [Vol. XVI, No. 4

so that

"°= "ish + 0(a3)'
giving finally,

/ = (1 " **)

which agrees with Pearson's result.

5. Final example. For our final example, we choose

k(x) = (1 + ax2) | x |"-1 + 1, 0 < v < 1;

this will illustrate a kernel with a non-logarithmic j and a non-zero q [see (1.2)]. The
integral equation is

v(x) = /'[!+ «(* - <)s] I x - t I'"1 /(<) dt + f' /«) dt. (5.1)

The last term in this equation is a constant, /n0 , and so if we set

v* = <P — Mo , (5.2)

we have ■■ ■ (■ ■ >. ■

= £ kj^x - t)f(t) dt

- A J,
where

k+(x) = (1 + ax2) | x |T~'.

Now, if j(x) — | x I'"*,
xj' + (1 - i>)j = 0,

and so if Tf = ft j(x — l)f(t) dt,

T'xf = xT'f + (1 - y)Tf. (5.3)
Also,

A J = (1 + ax2) Ff - 2axTxf -(- aTx2f. (5.4)
We obtain from (5.3) that

T"x'f = x2r"f + 2(2 - v)xT'f + (1 - v)(2 - u)Tf; (5.5)

therefore, differentiating (5.4) and using (5.3) and (5.5), we obtain

Kf = r"f + + ")r/-
Thus, in order to solve (5.1), we must first consider the equation

17 = (5.6)
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where ^ is a solution of

+ cw(l + = v'l ■
Equation (5.6) can be solved by Latta's method if \p (and, therefore, <p) is an exponential
polynomial. The details of the computations, though complicated, are not impossible,
but it would serve no purpose to complete them here.
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ON THE FIRST STABILITY INTERVAL OF THE HILL EQUATION*
By C. R. PUTNAM (Purdue University)

Let X denote a real parameter and let / = /(<) be a real-valued, continuous periodic
function of period 1. It is known (Liapounoff) that the Hill equation

z" + (X + M)x = 0 [' = d/dt, f(t + 1) = /«)] (1)
is stable for X = 0, so that every solution of the equation x" + f(t)x = 0 is bounded,
whenever

/ > 0> / 0 and [ f dt < 4; (2)
J 0

see, e.g., [1], [6]. Moreover the constant 4 of (2) is the best possible in the sense that
(2) is not sufficient for the stability of x" + fx = 0 if the 4 is replaced by 4 + t (e, a
positive constant) [3], If X0 and denote respectively the left and right end-points of
the first stability interval of (1) then the first two conditions of (2) imply X0 < 0 while
all conditions together imply Xt > 0 (and so X = 0 is interior to the first interval of
stability of (1)). Actually the inequality X, > 0 is implied by the single condition

f 1+ dt < 4, where f(t) = max [0, /(<)] (3)
Jo

(see [6]); moreover, the estimate

X, > 4 - £ f dt = 4(1 - | Ja f dt) (4)
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