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—NOTES—

EFFECTS OF GRAVITATIONAL OR ELECTROMAGNETIC
FIELDS ON FLUID MOTION*

By CHIA-SHUN YIH (University of Michigan)

Summary. It is'shown in this paper that the effect of gravity on a stratified fluid is
to inhibit steady motion in the direction of gravity; that, for small values of the magnetic
viscosity, the effect of a main magnetic field is to make steady weak motions of a fluid
independent of the distance along the lines of force; and that, again for small values of
the magnetic viscosity, the effect of a uniform electric field is to make steady weak
motions of a fluid rotationally symmetric with respect to an axis in the direction of the
field. These results, together with a similar one of Proudman (1916) [1] for a fluid with
general rotation, enable one to state that the effects of rotation, gravity, and electro-
magnetic fields (for small magnetic viscosity) are to endow the fluid with a certain
anisotropic rigidity by “stiffening” it along the vorticity lines, the isopycnic surfaces
or lines, or the lines of force, as the case may be. In the case of a weak steady motion or
relative motion, this “stiffening’’ has the effect of reducing the a prior: number of physical
or at least mathematical dimensions of the motion by one.

1. Introduction. Since Proudman [1] showed that the effect of rotation on weak
steady relative motion of an inviscid fluid is to make it two-dimensional, in the sense
that the motion is independent of the distance along the axis of rotation, experiments
performed by Taylor [2], Long [3], and others have largely supported his assertion.
Recently, Gariél’s experiments with a stratified fluid and Lehnert’s with mercury have
indicated similar effects of gravity and of a magnetic field, respectively. The purpose
of this paper is to describe these effects, to predict the effect of an electric current on
weak steady motions of a fluid, to explain all these effects mathematically and, as far
as possible, to bring out their similarity to one another. The fluid is assumed to be
inviscid and incompressible throughout and, in the case of an electromagnetic field, to
have negligible magnetic viscosity. :

2. Effect of rotation. For convenience of comparison and for completeness, Proud-
man’s demonstration [1] of the effect of rotation will be briefly presented. If the general
rotation of the fluid is Q, the axis of rotation can be chosen to be the z-axis. Two other
axes, both rotating with angular velocity ©, can be chosen to provide a rotating cartesian
frame of reference, with coordinates (z, y, z). The velocity components relative to this
rotating frame in the directions of x, y and z will be denoted by u, v, and w respectively.
The equations of motion are then (Morgan [4]):
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with p, p, and ¢ as the pressure, density, and the body-force potential, respectively.
The equation of continuity is
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For steady and weak relative motion, Egs. (1) to (3) become
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By cross-differentiation of Eqgs. (7) and (8), it can be readily shown that
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It follows from Eq. (5) that
— =0. (10)

Furthermore, by differentiation of Eqs. (7) and (8) with respect to z it can readily be
seen with the aid of Eq. (6) that
o ow
2= 0 Frie 0. )
Equations (10) and (11) indicate that the motion is independent of z. Hence, the steady
and weak relative motion is two-dimensional. In a loose way, one might say that the
general rotation has endowed the fluid with a certain rigidity along the vorticity lines.
It can be readily shown that for symmetric motion the radial velocity component
vanishes (so that the streamlines are spirals wound around circular cylinders). This
situation can be directly compared with the vanishing of the vertical velocity com-
ponent in the steady weak motion of a stratified fluid to be treated in the following
section, for in the case of rotation one may imagine a virtual gravity acting in the radial
direction, according to Mach and Einstein.
3. Effect of gravity. One now turns to the effect of gravity on steady and weak
motions of a stratified fluid. Let the z-axis be vertical. The equations of motion are
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in which D/Dt, as usual, stands for the substantial differentiation. The cquation of
incompressibility is

Dp
Di = (15)
which permits the equation of continuity to be given by Eq. (5).

The density can be cxpressed as the sum of a prevailing density p, , which depends
only on z, and a perturbation density p’:

p = p@) + o' (16)
For steady weak motion, Iigs. (12) and (13) become
% _o, 2_y (17)
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and hence, from Eqs. (14) and (16) one obtains
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Equations (17) and (18) are correct to the first order. But from Eqs. (15) and (16) it
follows that
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so that, from Egs. (18),
w=20 (20)

to the second order. Thus gravity inhibits steady velocity in the vertical direction, and
if the disturbance is not strong enough, steady motion can occur in horizontal planes
only. This situation is directly comparable to that for symmetric relative motion with
general rotation, provided that that motion is steady and weak, as mentioned in the
last section. In the present case, it is the isopycnic surfaces or lines that are “stiffened.”

Another result comparable to Proudman’s can also be obtained. If two-dimensional
motion is considered to start with, so that » is zero, Lqgs. (5) and (20) yield

ou
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Thus the motion will be one-dimensional, in the sense that the state of affairs does not
change with z—in much the same way that Proudman’s motion is independent of z.

In both cases z is measured in a direction normal to that of gravitation or virtual gravi-
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tation created by rotation. The essential one-dimensional character of steady weak
motions of a stratified fluid has been experimentally demonstrated by Gariél [5)].

4. Effect of a magnetic field. One now considers a uniform magnetic field H, acting
in the z-direction, and imagines a weak steady motion to take place in this field. The
fluid is assumed to be homogeneous. The perturbation magnetic field will be denoted
by h, so that the total magnetic field is

The vector equation of motion is (all electromagnetic variables being measured in emu),
with g as the body force per unit mass,

Dv .
p ;= —wadp + og + uj X H (23)

in which v is the velocity vector, u is the magnetic permeability and j the current density.
Since

curl H = 4rj, (24)
Eq. (23) may be written
Py = —gradp’ — grad ( g A (25)
in which
P =p+ e (26)

with ¢ again denoting the potential of the body force. The intensity E of the electric
field is related to the magnetic field by

curlE = —pu % @7

Turthermore, the current density, electric field, magnetic field, and velocity field are
related by the equation

i=oE+ uw X H) (28)

in which ¢ is the electric conductivity. The fluid being homogencous, the equation of
continuity is again given by Eq. (5).
Since the motion under consideration is weak and steady, IXq. (25) becomes, after

linearization:
’
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From Egs. (29) to (31) one obtains by cross differentiation

9 curlh = 0 (32)
or
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or, by virtue of Eq. (24),

a .
80 that the current density is independent of z. Although Eq. (33) is not needed to

prove the independence of the fluid flow on z, it contains a result which is worthy of note.
The linearized form of Eq. (28) is

j. = oE, , (34
iy = o(B, + pHow), (35)
jo = o(E, — pHy). (36)
Since the motion under consideration is steady, Eq. (27) becomes
curl E = 0. 37
From Egs. (24) and (34) to (37) one obtains, by the aid of Eq. (5),
2v- 7 VB (38)
in which
n = (4mpo)” - (39)
is the magnetic viscosity. If the magnetic viscosity is negligible, Eq. (38) becomes
T—o (40)

so that the motion does not change with z. Thus the magnetic field seems to have en-
dowed the fluid with a certain rigidity, as if the material along the lines of forces had
been stiffened to give the fluid a fibrous structure. If the motion is axisymmetric (e.g.,
if a sphere is towed through the fluid), from the equation of continuity one can easily
show that the radial velocity is zero. The mofion is then one dimensional in any meridianal
plane or, if no revolving motion exists, even truly one-dimensional. It may be mentioned
that for small values of the magnetic viscosity the lines of force always move with the
fluid, or, to use Alfven’s expression, are “frozen” into the material (Cowling [6], pp.
5-6). In the case of steady weak motions, the word “frozen’’ used by Alfven acquires a
much stronger meaning, as explained above.

5. Effect of an electric current. Consider now a uniform electric current j, flowing
in the z-direction, with (r, 6, 2) as the cylindrical coordinates. From Eq. (24) one obtains

H, = 4rnjor (41)

the other two components of the main magnetic field being zero. Eliminating j and E
from Eqgs. (24), (27), and (28), one obtains

% = curl (v X H) + nV°H (42)

which, for steady motion and negligible magnetic viscosity, becomes

curl (v X H) = 0. (43)
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To the first order, one has, with (u, v, w) for (v., v, v.),
vX H = (—Hyw, 0, Hy)
and

curl (v X H) = {r Y] (Hsu), — [ (Hw) + — (H.w)] 38 (H.w)}. 44)

From Eqgs. (41), (43) and (44) it follows that
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But the equation of continuity is
a(ru) + + a(rw) — 0.
Thus Eq. (46) yields
i
30 = 0 ‘ 48)

which, together with Egs. (45) and (47), states that the motion is independent of 4,
The meaning of this statement can be fully realized physically by imagining an object
to be towed slowly and steadily along a circular path about an axis parallel to the main
electric current. According to the result just obtained, the fluid will be pushed along
circular paths or along the lines of force of the main magnetic field induced by the main
electric current. What has been said in the previous section about the “stiffening” of
material along lines of force can be said in the present case also.

6. Concluding remarks. From the foregoing it may be concluded that, under the
assumptions stated, the effects of rotation, gravity, or an electromagnetic field are to
stiffen the fluid along the vorticity lines, isopycnic surfaces or lines, or lines of force,
respectively. In the case of weak steady motions or relative motions, this “stiffening”
has the effect of reducing the a priori number of physical or at least the mathematical
dimensions of motion by one, in the various senses stated. In steady weak motions of a
stratified fluid the velocity in the direction of gravity vanishes, and simple cases exist
in which motion normal to vorticity lines or lines of forces are completely inhibited. For
the motion of a conductive fluid due to the disturbance of an object slowly and steadily
towed through it along a circular path, a torus-shaped mass of fluid will revolve around
the axis of symmetry if a main uniform electric current is flowing longitudinally.

As already mentioned, the concept of a virtual gravitational field created by rotation
helps to unify the understanding of many phenomena of fluid motion involving gravity
and rotation.
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A GENERALIZATION OF LATTA’S METHOD FOR THE SOLUTION OF
INTEGRAL EQUATIONS*

By MARVIN SHINBROT (Lockheed Aircraft Corporation)
1. Introduction. The integral equation

o(r) = j;b k(x — 0f(t) dt, a<zx<b 1.1

with a and b finite arises in many applications. As examples, we mention the problem
of optimization of filters having a finite memory [1] and the problem of diffraction
through a slit [2, 3]. In the first of these problems, the kernel represents the autocorrela-
tion of the inputs to the filter; in the second, k(x) = H{"(| z |), the first Hankel function.

Its importance notwithstanding, no general solution of (1.1) is known; with but two
exceptions, only special methods exist for application to special kernels. The first excep-
tion is the method developed not long ago by Latta [4, 5]. The sccond—which is now
subsumed under Latta’s method—applies to the conceptually trivial case when the
kernel has a rational Fourier transform [1].

Latta’s method can be applied in the circumstance that k(x) satisfies a linear differ-
ential equation (of any order) with linear cocfficients. This restriction is still very far
from being moderate, of course, and since no general solution of (1.1) appears to be
forthcoming, it appears worthwhile to sec whether therc are other integral equations
having the form of (1.1) which can be reduced to onc of Latta’s type.

In a recent paper [6], Pearson considered (1.1) with

k(x) = p(x) log | z | + q(x),

where p and ¢ were polynomials. Although Pearson’s method has no apparent connection
with Latta’s, the fact that log | « | is a Latta kernel leads one to consider kernels of the
form

k(z) = p()i(x) + q(), (1.2)

where j satisfies a differential equation while, as in [6], » and q are polynomials. It is
to consideration of this case that the present paper is devoted.
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