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SOME INTEGRATED PROPERTIES OF SOLUTIONS OF THE WAVE
EQUATION WITH NON-PLANAR BOUNDARIES*

BY

LU TING
Department of Aeronautical Engineering and Applied Mechanics, Polytechnic Institute of Brooklyn

Abstract. Integrated properties of solutions of the wave equation with non-planar
boundaries are found and applied to three dimensional supersonic flow problems and
two dimensional diffraction problems.

For the problem of supersonic flow outside a cylindrical surface with generators
parallel to the flow direction, a theorem is proved concerning the integrated properties
of the linearized pressure distribution and the prescribed normal velocity on the surface.
The theorem is a generalization of the integral relationships obtained previously and is
useful in the evaluation of total lift and drag of wing-body combinations when the linear
dimensions of the cross section of the body are not small as compared to the chord length.

For the diffraction of a pulse or a weak shock over a rectangular notch, a pressure
integral theorem is obtained. Its usefulness is demonstrated in reducing the labor of
obtaining the mean pressure distribution along any depth inside the notch at different
instants for various width-height ratios of the notch.

Introduction. Theorems concerning certain integrated properties of the linearized
pressure field due to planar source distributions in a supersonic stream have been pre-
sented by Lagerstrom and Van Dyke [1] and by Bleviss [2]. Extension of the theorems
and their applications to a class of three dimensional problems involving biplanes or
cruciform wing arrangements were presented by Ferri [3] and by Ferri and Clarke [4],

Ferri, Clarke and Ting [5] obtained a theorem regarding the pressure integral along
the line of intersection of a forward Mach plane with a specified non-planar surface
which represents a prismatic body of rectangular cross section mounted on a planar
wing with supersonic edges. The pressure integral is related to the integral of the source
distribution which in turn is related to the integral of the prescribed normal velocity
on the top (or bottom) surface of the body and that on the wing surface. A similar rela-
tionship can be established if the normal velocity is prescribed on the side walls of the
body. The wing surface together with the surface of the body above (or below) the
wing represents a cylindrical surface in the form of a "single" step with generator parallel
to the direction of the undisturbed supersonic flow.

By a further extension of the theorem in [5], it can be shown that a similar integral
relationship is valid if the cylindrical surface is of the form of a "stairway" with a finite
number of steps. As the number of steps becomes infinite and the size of each step
infinitesimal, then a sequence of "stairways" is obtained whose limit can approximate
the shape of any given cylindrical surface. Hence, the generalized integral relationship
to be presented in this paper is conjectured. However, the argument which leads to
the conjecture cannot be accepted as a proof of the validity of the relationship unless
it can be shown that the limit of the sequence of the corresponding disturbance pressures
or potentials exists and equals the corresponding value for the given cylindrical surface.

•Received November 12, 1957.
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Such a convergence proof is by no means simple. An attempt to verify the relationship
directly by the same procedure used in the preceding investigations has not been suc-
cessful owing to the difficulty of finding the proper source distribution which corresponds
to the prescribed boundary condition on the cylindrical surface. The fact that the
velocity potential is a solution of the wave equation is expressed implicitly in the preceding
investigations through the relationship between the integral of the pressure distribution
and that of the source distribution. In the present paper the integral relationship between
the pressure distribution and the prescribed normal velocity is verified by observing the
fact that the velocity potential obeys the wave equation. Thus, the necessity of finding
the proper source distribution is avoided.

Generalization of integral relationship. As shown in Fig. 1, a cylindrical surface,
y = F(z), is placed in a supersonic stream with its generator parallel to the x-axis,
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Mach plan*, x + By« M/9 *hll*
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Plan* z«K|(£) ckgc
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are esc M
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Fig. 1. The generalized integral relationship.

which is the direction of the undisturbed supersonic flow with velocity U and Mach
number M. qn[x, y = F(z), z] represents the prescribed small normal velocity on the
cylindrical surface with

qJU « 1 (1)
and

q„[x, F{z),z] = 0 for x < 0. (2)
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It will be assumed that q„[x, F(z), z] is piece-wise continuous and that for any given
Mach plane, x + By = M/3, at a finite distance /3 from the origin, there exist two finite
values i£i(/3) and K2(J3) with Kl > K2 , such that on the Mach plane, the disturbance
potential <p, due to qn , is confined inside the region Kx > z > K2 , i.e.,

<p(x < Ml3 - By, y,z) =0
for

oo > 2 > 7?li(/3) and K2(0) > z > — 00 . (3)

The disturbance pressure, p(x, y, z), is related to the prescribed normal velocity on
the cylindrical surface by the following integral relationship.

Theorem I. The integral of the ^-component of the disturbance pressure force acting
on the portion of the cylindrical surface, y = F{z), which lies ahead of any given Mach
plane parallel to the z-axis, x + By = Mi3 is equal to pU/B times the integral of the
prescribed normal velocity on the cylindrical surface, over the same domain of inte-
gration, i.e.

ff p(.x, y, z)n- j dS = — J J qn(x, y, z) dS, (4)
r r

where n is the unit vector normal to the cylindrical surface, j is the unit vector parallel
to y-axis, and V represents the domain of integration on the cylindrical surface for

0 < x < Mfi — By.
Proof. The disturbance potential <p(x, y, z) obeys the wave equation

d2 «%2 »v2_jp djp d <p _ _
32 „2 — U. I"/dx dy dz

If a vector Q(x, y, z) is defined as

Q = (B<px + <pv)(Bi — j) — <pzk (6)

then Eq. (5) yields

div Q = 0.
If the volume which is confined by the cylindrical surface y = F(z), the Mach plane

x + By = M/3, the planes z = Kx{0), z = K2(P) and x = 0, is designated by V and
its surface by S, then Gauss' theorem [6] states

-ffn-QdS = JJJ div QdV = 0, (7)
S V

where n denotes the unit vector normal to the surface S and points inward. Equation (7)
is valid if Q is continuous inside V, i.e., if <p and its first derivatives are continuous.
This is certainly true when qn[x, F{z), z] is continuous. It will be shown later that Eq.
(7) is valid even if qn is piecewise continuous.

Since <p and its first derivatives vanish on planes x = 0, z = Kl and z = K2 , Q van-
ishes thereon. Since the unit normal vector n,? to the Mach plane x + By = M(i is
n<i = (i + Bj)/M, it is clear that on the Mach plane — Q n = Q-n„ = 0. Consequently
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on the surface S, n • Q vanishes except the portion on the cylindrical surface, and Eq.
(7) becomes

JJ n Q dS = 0. (8)
r

The domain of integration on the cylindrical surface has been extended beyond the
region of K2 < z < Ki because <p vanishes for z > Kx or z > K2 .

For the cylindrical surface y = F(z), ni = 0, and Eq. (7) becomes

J J [{Btpz + <pv)(n-j) + ^nk] dS = 0. (9)
r

With disturbance pressure p = — pU<px and the disturbance velocity,

q = <Pzi + <p„j + <Pi k,

Eq. (9) leads to

J J jnpdS = — pU JJ" <pxnj dS
r

JJ kvn-j + <P,n k] dSpU
r

The remainder of the proof of the theorem is to show that Eq. (7) is valid even when
qn is only piecewise continuous.

If qn[x, F{z), z] has a jump discontinuity across a curve on the cylindrical surface T,
and the first derivatives of the disturbance potential are discontinuous across a surface
Se inside the volume V, the discontinuity surface Sc will be a characteristic surface—a
Mach cone or an envelope of Mach cones.

A unit vector, nc , normal to the discontinuity surface, Sc , is also normal to a Mach
cone and can be written in general as

nc = (i — B cos Xj — B sin Xk)/M (11)

where X is a parameter. Due to the discontinuity surface, a term

// w-> dS

should be added to the right side of Eq. (7). Here 5( ) express the jump of the quantity
inside the parenthesis across the surface Sc .

From Eqs. (6) and (11), it follows:

Q n, = {{B<px + <PP)( 1 + cos X) 4- <f>. sin X]B/M

= grad <p ■ xc

= I I <Pr ,
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where

tc = [(Bi + j)(l + cos X) + sin Xk]B/M

and <pT is the derivative of <p in the direction of ve .
With tc-nc — 0, or tc tangential to the surface S, , <pr represents a derivative of <p

along the surface Se . Since <p is continuous across the surface Se , <pT is also continuous,
i.e., 8(<pr) = 0. Hence, the additional term to Eq. (7) vanishes,

//w •n„) dS — JJ \ tc \ 8(<pr) dS = 0
St

and Eqs. (7) to (10) are valid when qn is piecewise continuous.* Thus concludes the proof
of the theorem.

If and r2 are the areas on the cylindrical surface y — F(z) ahead of the Mach
planes x + By = and x + By = f}2M, respectively, the theorem or Eq. (4) yields

/J pn j dS = ff qndS. (12)
r,-r, r,-r,

When the two Mach planes are very close to each other, i.e., Mfii — Mf52 — dx, the
following result is obtained.

Corollary. The integral of the disturbance pressure along the curve of intersection,
T, of the cylindrical surface y = F(z) with the Mach plane x + By = Mfi is related to
the integral of the prescribed normal velocity qn[x, F(z), z] as follows

[ p sin <rn-j dT = ~ f qn sin <r dT, (13)
J T LJ J t

where a represents the angle between the £-axis and the tangent to the curve T.
Equation (13) is obtained readily from Eq. (12) when dS is replaced by dx dT sin <t

and the area I\ — r3 becomes a strip along the curve T with thickness equal to dx sin a.
On the basis of linearized theory, the prescribed normal velocity q„ on the cylindrical

surface y = F(z) can be created by deforming the cylindrical surface slightly into a
surface y = F{z) = tE(x, y, z), if

qn[x, F(z), z) = <UEx[x, F{z), z]( 1 + F*)~1/2 (14)

where e« 1.
With this equation the integrals of disturbance pressure on an almost cylindrical

surface in a supersonic stream are obtained from Eqs. (4) and (13).
Application to wing-body interference. In studying wing-body interference, the

body is usually represented by an almost cylindrical surface with generator parallel
to the direction of the supersonic stream (x-axis). The wing, which is planar with super-
sonic edges, coincides with the x-z plane while the x-y plane is the plane of symmetry.
The surface of the body above (or below) the wing together with the upper (or lower)
surface of the wing form the cylindrical surface y = F(z) (Fig. 2).

*This is a sufficient condition but not a necessary condition for the validity of the theorem.
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SHADED AREA DOMAIN OF INFLUENCE OF BODY ON WIN6
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Fig. 2. Wing-body interference.

If T„ and Tw represent the line of intersection of the Mach plane, x + By = /3M,
with the body and the wing respectively, the corollary, Eq. (13) becomes:

f psin <m-j dT + f p dz = f qn sin <r dT -f U [ 11 dz, (15)
Jtb J T W H J tb J T W

where 0(x, z) is the inclination of the wing surface with respect to x-axis.
This relationship can serve as a check to the numerical results of the pressure distri-

bution obtained by analytic methods [7, 8, 9, 10].
If the wing has a straight unswept trailing edge, the total lift acting on the region T

of the upper (or lower) surface of the wing-body combination ahead of the Mach plane
passing through the trailing edge is expressed by the term on the left side of Eq. (4).
This lifting force which consists of the total lift acting on the wing and the lift acting
on the part of the body is equal to the integral of prescribed normal velocity represented
by the right side of the same equation. Therefore, if the pressure distribution on the
body is obtained by analytical methods [7, 8, 9, 10], the total lift and the center of
pressure can be obtained by virtue of the theorem and the corollary, i.e., Eq. (15). The
labor of calculating the pressure distribution on the wing is saved.

In the special case where the inclination of the wing surface inside the region of
influence of the body is constant in the spanwise direction, the total drag can be evaluated
with the help of the theorems without calculating the pressure distribution on the wing
due to the interference of the body [5, 11].

For wings with subsonic edges at an angle of attack, the theorem, in general, will
not be helpful in the evaluation of lift or drag. However, for the special case of a rectan-
gular wing, the theorem can be applied to obtain expressions for the lift, the drag, and
the center of pressure of the wing without calculating the detailed pressure distribution
[11].

Integral relationship in diffraction problems. Since the linearized two-dimensional
unsteady flow obeys the wave equation,



1959] WAVE EQUATION WITH NON-PLANAR BOUNDARIES 379

d2<P , d*<P 1 dV n /1fix
yx" + W2~c"Je = 0' (16)

it is expected that an integral relationship similar to that for the linearized supersonic
three-dimensional flow can be found. In order to demonstrate its usefulness, an integral
relationship is established for a special diffraction problem—the diffraction of a weak
shock or pulse over a rectangular notch.

As shown in Fig. 3, a plane weak shock (x = Ct), which travels parallel to the ground

C+0(«)

At butant t > w/C

LJ
Fig. 3. Diffraction of a weak shock over a rectangular notch.

{■y = 0) is passing over a two-dimensional rectangular notch of width w and depth h.
The pressure, density and speed of sound of the air at rest in front of the shock are P, p and
C respectively. Deviations from the states at rest are defined as disturbance quantities.
For example, if the notch is absent, the disturbance pressure and potential are
ePH(Ct — x) and tC(l/y). (x — Ct)H(Ct — x) respectively, where e is the strength of
the shock and H(Ct — x) is the unit function, i.e., H — 1 for Ct > x and H = 0 for
Ct < x. The disturbance due to the notch will be confined inside the forward cone
Ct = (x2 + y2)l/2- Across the cone, the disturbance potential and its first derivatives
are continuous.
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Experimental investigations of this problem in shock tubes were reported by Smith
[13] and Coulter [14]. Theoretical solution to this problem can be obtained by the method
outlined in [9] and [12]. Nevertheless, an integral relationship will be established and
save much labor in getting numerical results.

Theorem II. Twice the value of the line integral of disturbance pressure across the
notch at a depth d(0 > y = —d> —h) at an instant t0 equals the difference of the
integral of disturbance pressure on the ground from the corresponding integral if the
notch is absent at the "retarded" instant t = t0 — d/C plus the same at t — t0 —
(2/i - d)/C, i.e.,

2 f p(x, — d,t^)dx — tP f H(Ct — x) dx — [ p dx — [ p dx L_0
Jo L J-ct J-ci J i»

+ eP /" H(Ct — x) dx — f p dx — f p dx L-o
L J-Ct J-Cl Ju l.2h-d)/C

(17)

Prooj.* With characteristic coordinates a = Ct — y and /3 = Ct + y, the wave equation
becomes

4^„<i = . (18)
The a- and /3-axes together with the z-axis form an orthogonal system. The plane

/3 = Ct0 — d = const. /30 passes through the depth y = —d at the instant t — t0 . On

Fig. 4. Integral relationship for diffraction problems.

this plane, the cone is represented by a parabola x2 = a/30 and the shock front is repre-
sented by a straight line 2x + a = which is tangential to the parabola at point x = /?0
(Fig. 4).

If S designates the area confined by the parabola, the ground a = /30, the side walls

*For the convenience of those who are interested in diffraction problems, the proof is given here
without relying on the previous theorem.
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of the notch x = 0 and x = w, and the line a = /80 + 2d at the depth y = —d, then
the divergence theorem in the plane /3 = /30 states (p. 88, Ref. [6]):

/ (4^ cfo + ¥>* d„) = / [4^ cos (X, x) — <p, cos (X, a)] dX
Ja (19)

= [ — <p„) dS = 0,
J S

where A designates the contour of the area S. If A!, denotes the part of the contour on the
ground, Aa on the side walls, A3 along the depth y = —d, and A4 and A5 denote the
portions of the parabola above and below the ground level respectively (Fig. 5) then

A = A! + A2 + A3 + A4 + A5 .

A| * ob+fg Ground

A, « c«, y » -d
A4 • oOg Parabola
Ag * flk Parabola
fh « Shock front

Fig. 5. /8-planes, Ct + y = Cto — d.

On the side walls, <px = 0 and cos (X, x) — 0, therefore, the line integral of Eq. (19)
along A2 vanishes. Across the parabola (Mach cone), <p and its first derivatives are
continuous, therefore, along A5 , <p$ , <px and the corresponding line integral vanish.*
Along A4 , <px = tC/y and <p$ = — eC/(2y) and the corresponding line integral becomes:

f [4<pb dx + <px dx] = itC(Ct0 — d)Jy.
J

*When Ct > d + w, A5 disappears from A, however, it does not affect the result, because the line
integral along A6 vanishes anyway.
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Along Ai , >pv — 0 and <pe — + Vt/C)/2 = — p/(2pC), and Eq. (19) becomes

/0 it C t o~ h
p(x, 0, t0 — d/C) dx + p(x, 0, to — d/C) dx

- f ePH(Cto - d)dx (20)

f»V) a VP

= — / p(x, —d, t0) dx + pC / —d, t0) dx,
Jo Jo

the terms on the right side corresponding to the line integral along A3 . For t0 < (d2 +
wT2/C, A3 has been extended to the full width of the notch, because the integral in
the additional segment vanishes.

By the method of images, the bottom of the notch plane y — —h, can be removed
and considered as a plane of symmetry, i.e.,

<p(x, y, z) = <p[x, -(2h + y),z]. (21)

Instead of the plane fi = Ct0 — d, the other characteristic plane a — Ct0 + d is
considered and the result corresponding to Eq. (20) is obtained,

I f p(x, —2h, t) dx + f p(x, —2h, t) — f ePH(Ct — x) dx
LJ-ci J» J-ct Ji-i„-<2\-d)/c ^22)

= — / p(x, —d, t0) dx — pC / <p„(x, —d, t0) dx.
Jo Jo

With the condition of symmetry Eq. (21), the sum of Eq. (20) and Eq. (22) is equiva-
lent to Eq. (17). Hence, the theorem is proved.

O 28 0 50 0.78 1.0 1.25 1.80 1.78

Fig. 6. Mean disturbance pressure across the width of the notch for h/w = 1.
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The mean value of disturbance pressure across the width of the notch at depth,
y — —d, is defined as

p*(y = -d, t) = ~ f p(x, -d, t) dx
W Jo

and Theorem II, Eq. (17), becomes

P*(y = ~d, to) = ^ £eP J H(Ct — x) dx — J p dx — J p

+ I eP f H(Ct — x) dx — f p dx — f p dx L.0
Zw |_ J-Ct J-Ct J* Jt-to- (2h-d)/C

With this relationship, the mean value of disturbance pressure along any depth
inside the notch can be obtained from the pressure integral on the ground. The latter is
obtained by the method presented in [9] and [12]. Detailed steps are given in [11]. The
variations of mean pressure across the width of the notch at y/h — 0, — — J, — | and
— 1 with respect to time are shown in Figs. 6 and 7 for notches with width-height ratios
equal to 1 and § respectively.

■i/C

(23)

0 8

0 0.25 0.S0 0.75 1.0 1.29 1.50 1.75 i .0

Fig. 7. Mean disturbance pressure across the width of the notch for h/w = 2.

Concluding remarks. For the problem of supersonic flow outside a cylindrical surface
with generators parallel to the flow direction, a theorem is proved concerning the inte-
grated properties of the linearized pressure distribution and the prescribed normal
velocity on the cylindrical surface. This theorem can be extended readily to the case
where there is more than one cylindrical surface present in the flow field and will be
useful in the evaluation of total lift and drag of wing-body combinations and additional
cylindrical bodies representing engines and (or) pylons.

For the diffraction of a pulse or a weak shock over a rectangular notch, a pressure
integral theorem is obtained. By the same procedure, the theorem can be generalized
for a notch of any shape, although the analytical solution of the diffraction problem is
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not available. By virtue of the theorem, the time history of the mean pressure along
any depth inside the notch can be obtained from the measured pressure distribution
on the boundaries.
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