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ON AN INITIAL VALUE PROBLEM CONCERNING
TAYLOR INSTABILITY OF INCOMPRESSIBLE FLUIDS*

By G. F. CARRIER AND C. T. CHANG (Harvard University)

Abstract. By taking the effect of surface tension and viscosity into consideration,
-Bellman and Pennington [2] have generalized the original treatment of the problem
of Taylor instability [1]. They claim, however, that a problem in which the motion
starts from rest cannot be treated with their linearized formulation. In this paper, the
initial value problem is treated and, although the algebra becomes more complicated,
the linearized analysis suffices. In particular, the cut-off wave number as found in [2]
is not modified.

1. Introduction. The problem of Taylor instability [1], asks about the instability of
a small disturbance imposed on the interface separating two infinitely extended fluids
when the system is undergoing a constant acceleration directed from the lighter towards
the heavier fluid.

The original treatment was limited to incompressible nonviscous fluids. Surface
tension effects at the interface were ignored. Referring to a simple sinusoidal initial
disturbance of amplitude @ and wave number k, the result showed that the time history
of the surface disturbance with respect to the accelerated frame of reference is given by

n(z, t) = a cosh () cos kx. (1.1

The growth factor ‘“n’’ is related monotonically to the wave number “k” by the
expression
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In the above, p, , p; are the densities of the lighter and the heavier fluid respectively,
while

*=9+ a9 1.3

with g as the usual gravitational constant, and g, , the imposed acceleration.

Bellman and Pennington [2], later generalized Taylor’s original result by taking the
effect of surface tension and viscosity into consideration. They assumed a standing
wave type solution and obtained the following expression for the growth factor ‘“n’
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where T is the surface tension of the interface. Equation (1.4) indicates the existence
.of a cut-off wave number k. , i.e. a wave number such that no instability arises when
k > k. , where
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Their result also shows that viscosity tends to retard the growth of the interface.
However, they note a dilemma, for according to their solution it is impossible to start
a motion from rest. They attributed this seeming paradox to the linearization performed
in their analysis.

The object of this paper is to show that this paradox is easily resolved. As a con-
sequence, the time history of the interface is given by a more complicated expression
than that of Eq. (1.1); in particular, it is no longer possible to define a simple growth
factor. However, this algebraic complication, neither compromises the existence of the
cut-off wave number nor changes its value as given by Eq. (1.5).

2. Formulation of the problem. For simplicity, we shall confine our attention to
an air-liquid system, i.e. we may approximate the density ratio by p,/p, = 0. The more
general problem can be treated in precisely the same way. The flow field is taken as the
half plane bounded above by the free surface y = n(z, ¢). The medium is assumed to be
incompressible but viscous; surface tension effects are to be included. The whole body
of the fluid is assumed to undergo a constant vertical acceleration g, directed from air
towards the liquid. Referring to a stream function ¢, , the linearized momentum equation
with respect to the accelerated frame of reference can be written as

939

3y ot [VPy —» V2V Y] =0 2.1

and ¢ itself must satisfy
% Vg =y VIV 2.2)

The coordinate axes are chosen in such a way that the z-axis is taken in the unper-
turbed plane of the free surface while the y-axis is taken normal to it.

With some amount of algebraic manipulation it can be shown that ¢ must satisfy
the following boundary conditions (they imply ¢,, = o., = 0) at the free surface:

T
V(¢zz= - 'l’zvu)l - ¢z¢l + g*'//zu = _; ¢:zy )
= Voo + Vi = O’ at y = 0.
The usual kinematic requirement at the free surface is

N = _'l’:v . (2'4)

With no loss in generality, we can restrict the analysis to a single Fourier component
in z; thus we may write

(2.3

vz, y, t) = ¢(y, e,
n(z, t) = o(t)e’™.

(2.5)
We may also define

f(y,9 = f i e ey, ) dt
0 (2.6)
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and obtain in place of Egs. (2.2) and (2.3) the following equations
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for —» <y <O,
and
k’ ¥y + f'vv = 0
oK+ ful + o1 + (o + ! za);, @.8)

= s¢(0, 0)——(*+ k’)a(O), at y=0.

From these expressions one observes that the problem is determined theoretically
once the initial surface disturbance and the initial velocity field throughout the domain
are prescribed.

3. Illustrative example. To illustrate our discussion, let us take

¢'(x, Y, 0) =0 (3.])
and
n(z, 0) = a cos kz, 3.2

i.e‘. the motion is started from rest with an initial disturbance imposed at the free surface
in the form of a sinusoidal wave having amplitude @ and wave number k.
Using the foregoing method, it can be verified that . is given by

4
n = —a{vk’ﬂ > Aja; exp [(@F — 1)k*t) erfc [—a,(vk*t)"/ ’]} cos kx 3.3)

i=1

where a; are the roots of the quartic

Pr)=74+2"—4r4+ (1 +8) (3.9)
with
P =1+ V—ZE
the quantity A; is given by
dP)"
A; = (d‘r . 3.5

and the parameter 8 is given by
T [(k) (k)
o= A () - ()] @9

Here, k. is the cut-off wave number corresponding to p,/p: = 0, i.e.

b - {_. g:}uz 3.1
e = pT . Jd.
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Equation (3.4) indicates that for each j the Re (af) < 1 when | k/k. | > 1, but this
inequality does not hold when | k/k. | < 1. Thus we are in agreement with the principal
result obtained in [2] but note that the model of that paper has broader validity than
was claimed.
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Comments on the paper

WAVES PRODUCED BY A PULSATING SOURCE TRAVELLING
BENEATH A FREE SURFACE*

Quarterly of Applied Mathematics XV, 249-255 (1957)

By PAUL KAPLAN (Stevens Institute of Technology)

There appears to be an error in the analysis performed in the subject paper by
Dr. Tan [1], which has led to erroneous conclusions in regard to the character of the
resulting wave pattern and the asymptotic conditions at infinity that are used to arrive
at a unique solution. Other treatments of this same problem have been carried out by
Becker [2], Kaplan [3], and Wu [4], and they have arrived at different conclusions from
those of Tan. Their results show two harmonic wave trains on the downstream side
of the source when 7 > %, corresponding to the roots K; and K, , in agreement with
the results of Tan. However, when 0 < 7 < %, Tan indicated that four harmonic wave
trains were on the downstream side, with no disturbance found to propagate to infinity
upstream. This led to his conclusion that the imposition of an asymptotic upstream
condition of ‘“vanishing disturbance at infinity” is sufficient to render his solution
unique. The results of Becker, Kaplan and Wu were all in agreement, and showed that
when 0 < 7 < i there were three harmonic wave trains on the downstream side, and
one harmonic wave train on the upstream side. It can be shown that the wave in the
upstream side corresponds to the root K, and that the error in Tan’s analysis was not
recognizing the fact that, in the notation of [1],

lim ImK, = 0— O0O<r<d
-0

not 0+, as he indicated.

If this error were corrected, and the resulting analysis carried out in the same manner
as done in the paper, the results would have been in agreement with that of the other
authors. The imposition of the requirement of no disturbance upstream would not be
valid, but the use of the technique of Rayleigh’s artifice in order to secure uniqueness
would not be affected, in spite of the artificial nature of this factor. A more realistic
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