
385

VIBRATIONS OF TWISTED BEAMS II*
BT

WILLIAM BOYCE AND GEORGE HANDELMAN
Department o]'Mathematics, Rensselaer Polytechnic Institute

1. Introduction. The basic equations governing the transverse vibrations of a
straight, twisted beam rotating about an axis, passing through one end and perpendicular
to the undeflected central axis of the bar, have been discussed in an earlier paper [1].**
It is the purpose of this note to explore some of the implications of these equations and
to answer some unresolved questions raised in the previous work. We shall not be con-
cerned with the problems of numerical calculations, for these have been studied exten-
sively by others (see, for example, [2] and [3]). The results presented here are of a some-
what more qualitative nature.

The twisted beam is described in terms of a straight center line which is the locus of
the centroids of the cross-sectional planes taken normal to the line. A cross-section is
specified by means of the arc length s measured along the center line from a fixed origin
0 on the axis of rotation. Two triads of orthogonal unit vectors, as shown in the figure,

are used in the analysis. The first is a moving triad i, j, k, in which i is directed along
the undeflected center line at a generic point Q, positive in the direction of increasing s;
whereas, the vectors j and k have the directions of the principal axes of inertia of the
cross section at Q. In general, the triad rotates about the i axis as the center line is
traversed with j(s) at Q making an angle </>(s) with j(0). The second triad of unit vectors
is a rotating, untwisted frame consisting of I, coincident with i; J, lying along the axis of
rotation; and K, perpendicular to I and J forming a right-handed system. The vector
j(0) forms the angle 80 with J.

If the displacement u(s, t) is assumed to have harmonic time dependence, u(s, t) —
v(s) exp (i\t), and w(s) = i X v, the equation of motion [s^e [1], Eq. (4.8)] is given by

B_1 '3"?( — 02 x l^(s) ~Tr ~ m(s)A(s) ■ w — w?(s)4(s)X2 w = 0. (1.1)ds 1 ds J ds 1 ds
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The mass per unit volume and cross-sectional area are denoted by m(s) and A (s) respec-
tively, while U is the constant angular speed of rotation. When referred to the i, j, k
triad, the dyadic B_1 is given by

IT1 = E7,jj + Eljsk,

where E(s) denotes Young's modulus, and /i(s) and I2(s) are the centroidal moments
of inertia about the j and k axes respectively. The dyadic 0(s) is defined in terms of
d(s) = <£(s) + 60 as

0(s) = cos2 0jj — sin 6 cos <9(jk + kj) + sin2 0kk;

and

L(s) = m(QA(Qt dt,

where I is the total length of the bar.
The beam is assumed to be elastically supported at the axis of rotation. Consequently,

at s = 0

w = w' - e-B-'-w" = 0, (1.2)

where primes and Roman numerals denote differentiation with respect to s and

e = «ijj + e2kk, «! >0, «2 > 0.

In the i, j, k coordinate system, e2 is the ratio of the bending moment about the k
axis to the angle of inclination of the beam with respect to the (i, k)-plane. A similar
interpretation holds for e, . The end s = I is assumed to be free; therefore,

B"1-w" = (B_1-w")' = 0 (1.3)

there. It is the purpose of this study to examine some of the properties of the eigenvalue
problem defined by the differential equation (1.1) and boundary conditions (1.2) and
(1.3).

2. Positive definiteness of the Rayleigh quotient. The Rayleigh quotient, 7?(w) =
D(w)/i7(w), which corresponds to the eigenvalue problem defined by Eqs. (1.1), (1.2),
and (1.3), has been discussed in [1]. It was found there that

D(w) = f (w"-B"'-w" + fi2Lw'-w' — m4fi2w-@-w) ds + w'(0)-c-1-w'(0), (2.1)
J 0

and

//(w) = [ mAvrwds. (2.2)
Jo

A straightforward calculation shows that each of the terms can be written as a sum of
squares, but it is not obvious that D(w) is itself positive definite since the last term is
preceded by a minus sign. It is not reasonable, on physical grounds, to expect that this
functional could ever be negative, for this would imply the possibility of purely imaginary
frequencies. Nevertheless, it is necessary, from the mathematical point of view, to
establish positive definiteness in order to apply the usual Rayleigh-Ritz procedures and
comparison theorems.
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The proof depends on theorems concerning M-definite and AT-definite eigenvalue
problems given by Kamke [4] and Kestens [5]. These results, although actually stated
for scalar equations, can be extended to vector equations of the type considered here.
The major change requires the use of the integral representation of the vector solution
in terms of a Green's tensor rather than a scalar Green's function. The resulting algebraic
structure is the same as the standard situation and the proofs can be carried through by
appropriate changes in notation.

Let us assume that Z)(w) is not positive definite and there is a value of O2 for which
the corresponding eigenvalue X2 is less than zero. Since X2 is a continuous function of 02
and X2 > 0 for fi2 = 0, there must be a value of 02 > 0 for which X2 = 0.

Let a)2 be that value of for which X2 = 0. Thus co2 is an eigenvalue of the problem

(B_1 •w")" - co2(Lw')' - mAu&-w = 0, 0 < s < I, (2.3)

jw = w' - = 0, s = 0, ^ ^

1b_1-w" = (B_1-w")' = 0, s = I.
The Rayleigh quotient R corresponding to this problem is

[ w"-B_1w" ds + w'(0)-e_1 -w'(0)
R =  (2.5)

(miW'0'W — Lw'-w') dsJJo

Since the numerator is positive definite and the denominator is of undetermined sign,
the problem is of the type designated by Kamke [4: II, III] as M-definite. He has shown
that maximum-minimum theorems of the Courant type and comparison theorems hold
for this problem. An upper bound can be found for the positive eigenvalues co2 through
these theorems. Let

M = max {EIX > EI2), 0 < s < I;

then direct computation shows that

w"-B-I-w" < Iw"-w".

In addition, if

n = max mA, v = min mA, 0 < s < I,

then
Us) < iM(Z2 - s2).

Furthermore if

w = FJ + W2 K,

then

w-0-w = W\ ,
and

/ mAw- 0-w ds > v / W\ ds.
Jo JO
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Also, if a = max (ej"\ ej1),
then

w' e_1-w' < ttw'-w'.

Let co?2 be the nth positive eigenvalue corresponding to the Rayleigh quotient

f Afw"-w" ds + aw'(O) -w'(0)
B* =    (2.6)

x / W\ ds - b I (12 - s2)w'-w' ds
JO Jo

We then obtain from Kamke's comparison theorems

The differential equations and natural boundary conditions which arise from the
Rayleigh quotient (2.6) can be found, by elementary variational techniques, to be

MW? - §/«o*2[a2 - a*)WlY - w*2"W, = 0,

17,(0) = aPFKO) - MW[\0) = 0, (2.7)
= 0,

and

MWlv - bu*2[(l2 - s2)W'2]' = 0,

17,(0) = aWHO) - MWZ'(0) = 0, (2.8)
W'2'{1) = = 0.

Let us first consider the simpler of the two eigenvalue problems, (2.8). Multiplying
the differential equation by W2, integrating from 0 to I, and applying partial integration
together with the boundary conditions yield

-fru*2 [' (I2 - s2)TFf ds = a[Ws(0)]2 + [' MW'2'2 ds.
Jo Jo

Consequently, there are no positive eigenvalues w*2 for problem (2.8); and the assumed
solution must be found, if it exists, from problem (2.7).

Equations (2.7) can be analyzed by observing that they represent the transverse
vibrations of a uniform bar rotating about an axis at s = 0 with a constant angular
velocity to*(/i)1/2. The bar is elastically restrained at s = 0 and free at s = Z. The circular
frequency of transverse vibration corresponds to co*(i>)1/2. According to the Southwell [6]
inequality, the smallest eigenvalue u*2v must satisfy

co*2? > K + co*V,

where K > 0 (with one possible exception to be considered later). Consequently,

co*V > (2.P^

However, 0 < v < n, contradicting (2.9) unless co*2 < 0. Thus there are no eigenvalues
co*2 > 0 and hence no eigenvalues co2 > 0. Therefore in our original problem there is
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no value of O2 > 0 for which X2 = 0, and all of the eigenvalues of the problem defined
by Eqs. (1.1), (1.2) and (1.3) are positive.

With this result we can now show that for any admissible vector w, as defined in [1],
p. 255,

F(w) = / mAvr-0w ds— / Lw' w' ds < 0,
Jo Jo (2.10)

and hence complete the proof that D(w) is positive definite for any admissible vector.
If (2.10) were false, there would be a vector u such that

[' u"-B"l-u" ds + u'(0)-e~'-u'(0)
Jo 

/ mAu & uds— / Lu'-u'ds
Jo Jo

> 0.

A result of Kamke's [4, III, p. 257] states that there must then be an eigenvalue w2 of
Eqs. (2.3), (2.4), and (2.5) satisfying

0 < coa < p\

However, we have just shown that such an eigenvalue cannot exist and hence F(w) < 0,
proving that D(w) > 0 for all admissible functions.

The only exception to the preceding argument occurs when the constant K in the
Southwell inequality vanishes and n = v. This takes place when the bar is simply sup-
ported, w(0) = w"(0) = 0, and the maximum and minimum values of mA are equal,
i.e., mA = constant. In this case,

w = sj

is non-trivial and yields an eigenvalue X2 = 0 for any value of O2. Noting the relation
between w and the displacement u, we see that this solution corresponds to the beam's
remaining straight, always lying in the plane of rotation, and making a constant angle
with the i-direction. However, the non-negative character of D(w) is preserved if we
regard this situation as the limiting case which occurs when e^', ej1 approach zero.

3. Difference equations and continuity conditions. The preceding section, together
with the results contained in [1], shows that the lowest eigenvalue of the twisted, rotating
beam is described by the minimum principle

X2 = min^, D(yr)/H(yr),

where the class Wy of admissible vectors w consists of all vectors w having continuous
third derivatives, piecewise continuous fourth derivatives, and satisfying w(0) = 0.
In many instances, useful comparison results could be obtained if these continuity
requirements were lightened. The proof of such a minimum principle, however, would
normally require all the restrictions given above. Fortunately, Courant [7] has shown,
by a much more delicate analysis, that these restrictions for the admissible functions
can be reduced without disturbing any of the requisite properties of the minimizing
function. His proof goes much deeper than that usually given since it includes an existence
theorem as well as an analysis of the convergence of a related set of difference equations.
Although his paper is concerned with the standard, second-order, Sturm-Liouville
problem, he states that the results will carry over for higher order, self-adjoint problems.
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The extension to the present vector problem is straightforward, requiring only a few
changes in small details, and none in the basic method of proof. The algebra and notation
are, however, considerably more awkward.

We shall therefore give only a brief discussion of the following theorem. Let the
class W of admissible vectors contain those vectors w which are continuous, have con-
tinuous first derivatives, piecewise continuous second derivatives, and satisfy w = 0
at s = 0. Then among the vectors in W, there exists a vector, w<l>, which renders Z)(w)
a minimum subject to H(w) = 1. This vector is the first eigenvector of the eigenvalue
problem (1.1), (1.2) and (1.3); the first eigenvalue is X(1>' = Z>(w)(1)). If

H(w,u) = [
Jo

mAw-u da,

then, more generally, there exists a vector w<M, belonging to W, which minimizes Z)(w)
subject to H(w) = 1, H(w), w(,)) = 0, i = 1, • • • , k — 1. This vector is the fcth eigen-
vector of the system and X(t)> = D(wu>) is the fcth eigenvalue.

The integrals D(w) and H(w) are replaced by finite sums obtained by dividing the
interval 0 < s < I into n equal parts of length cn . Let w = ttJj + tw2k and t = dc/>/ds.
Furthermore, let Wi,0 , ■ • • , wllV , • • • , wx ,n represent the values of Wi at the points of
division and similarly for w2. Then wll0 =wx (0) and wx,n = w1 (I). The ordinary difference
operators will be denoted by A, A2, • • • , i.e.,

= ;r [w>i.,+i -
cn

A2wu, = 4 [Wi.,+i - 2wu, + toI>r_i].
Cn

Let

Pv{w) = A2wliV — w,,,t2, — 2t,Aw2,p — w2i,At, ,

Q,(yr) = A2u>2,, — w2,,t2 + 2t,Au>,,„ + wu,At, ,

R,(w) = Awlt, - w2,,t, ,

N,(w) — Aw2,r — w,,,T, ,

Gy(vf) — w\,w cos2 6, — 2wu,w2,, sin 6, cos 8, + w\,, sin2 8, ,

= iM,wr,
T(w) = €r1[fi„(w)]2 + e2-,[Aro(w)]2,

J,(w) = w2,, + w\,, ,
n

L,(s) = X) mkAkl;cn ,
k-v

Dn(w) = cn £ {^..^(w) + Eh„Ql(w)
v-0

+ £22L,[^(w) + N2,(w)] - m,tlyl,+1!!!Uw)! + T(w),

and
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n

Hn(w) = c„ X] m,A,J,(yr).
y = 0

Our original minimum problem can now be replaced by an ordinary algebraic eigenvalue
problem by asking for the vector w„ which makes Dn(w)/Hn(w) a minimum. This yields,
for example, a lowest eigenvalue X^u* and a corresponding eigenvector w^n>. The eigen-
vector w^n) is, of course, defined only at discrete points along 0 < a < I. However, we
may extend w£n) to a vector w(n)(s) defined over the entire interval by means of inter-
polation. Unlike the second order case, parabolic rather than linear interpolation is used.

It can then be shown that, as n becomes large, a subsequence of the X"'" converges
to a limit Xll>1 and a corresponding subsequence of w'"'(s) converges to a limiting vector
w(s). Furthermore, w(s) has all the requisite continuity properties for the solution of
the original differential equation and is an eigenvector with X(l)* the corresponding
eigenvalue. The proof for the higher eigenvalues follows similar lines.

As noted before, this modification of Courant's proof yields an existence theorem,
shows that the continuity requirements on the class of admissible vectors can be weakened,
and finally proves convergence (in the sense of subsequences) for the difference equations
which result from the minimization of Z)„(w)///n(w). These equations are the algebraic
Euler equations corresponding to

X»" = min D„(w)/tfn(w),

and are found to be

A2[£/I.,P,(w:n>)] - EIUv+lrl+1Py+Mn))

- 2A[J5/2,vr„Q,(w^>)] + EI2,y+1AT,+1Q,+1{wln)) - Q4A[L,fl,(wi"')]

-)- BLrtlT,Xi(*, ) cos 6,+iM,+i(yf„ ) X„ mp+iA,+iwl= 0,

and
A2[£/,.,Q.(w:n))] - EI2.,+1t2,+1Q,+1(wjn))

+ 2A[EI1„tJ>M"))] - Ar,+IP,„(0 - Q2A[L,NMn))]

- Q2L,+1t,+1R,+1(:w'"') + my+1Ay+1tf sin 0,+IM,+1(vr,n)) - X"''m,tl4r+1w^+, = 0,

with the natural boundary conditions
PMn)) = Qn(^) = 0,

A[MI,/»(w:"')] = A[£/2,nQn(w:n))] = 0,

Am,'?' - e1£/1.oPo(w:n)) = 0,

Aw^l - e2-E,^2,oQo(wi")) = 0.

As a direct consequence of these results, we obtain Courant's maximum-minimum
principle. Let v(°, i = 1, • • • , n — 1, be a set of independent vectors and let W be the
class of vectors w which have a continuous first derivative, a piecewise continuous
second derivative, and satisfy

i/(w, v(°) = 0, t = 1, • • • , n — 1.
If

M(v(i>) = glbwD(w)/H(w),
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where glbw stands for the greatest lower bound with respect to all vectors w in W, then

\M' = max M(v(i>).
V(i)

4. Some applications of the minimum principle. Two simple applications of the
comparison theorems implied by the Courant maximum-minimum principle will be
mentioned here. Until now we have considered the case in which the fixed end of the
beam occurs at the axis of rotation s = 0. Let us now assume that the beam is mounted
on a finite hub of radius d so that the flexible portion is in the range d < s < I. Then
the differential equation (1.1) holds over the range d < s < I rather than 0 < s < I
and the boundary conditions (1.2) are applied at s = d.

Consider two beams identical save for the fact that one has a hub radius dx , whereas
the other has a hub radius d2 (d1 < d2). In the first case s has the range d, < s < I,
whereas d2 < s < I in the second. We shall now establish the inequality

x"°' WO < x(n)' MO, (4.1)
a result which is physically reasonable.

We shall define Di(w) in the same fashion as D(w) in Eq. (2.1) except that the range
of integration now runs from di to I and the boundary term is evaluated at s = di .
We define i?i(w), D2(w) and 112 (w) correspondingly. Furthermore, let W(d2) contain
those vectors w which, in the interval d2 < s < I, have a continuous first derivative,
a piecewise continuous second derivative, and satisfy w(d2) = 0. We shall normalize
these vectors by requiring that H2(w) — 1. The maximum-minimum principle thus
states that if

W) = glbwu^Diiw),

under the condition i/2(w, v(,)) = 0, i = 1, • • • , n — 1, then

X(n>! WO = max M2(vc<)).
v(«)

Similarly, let W(d,) contain all vectors w in di < s < I which have continuous first
derivatives, piecewise continuous second derivatives, and satisfy w(ci1) = 0. If

= glbWidl)DM/HM

under the condition Hi(vr, v(,)) = 0, i = 1, ••• , n — 1, then

X(n)' WO = max Mj(v(<>).
v<»)

Let W* be the set of vectors w* defined over dt < s < I which are found by continuing
each vector belonging to W(d2) into dt < s < d2 under the following restrictions. When
s = di , w* = 0; w* has a continuous first derivative and a piecewise continuous second
derivative in di < s < I; and Z)j(w*) — D2(w*) < p, where p is an arbitrarily small
number. Finally, if for a given set of vectors v"', i — 1, ••• , n — l,a vector w in W(d2)
satisfies H2(w, v(,)) = 0, then the corresponding continuation w* satisfies

r»d a

/ ds = 0, t — 1, •••,» — 1;
Jd,

i.e., Hi(w*, vu>) = 0. Thus, W* is included in W{dx).
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With these definitions, we see that for any set of vectors v(,) for which Hi(w, v(,>) = 0,

A(w) -D,(w*)
9 H,{w) - gL w* ff,(w*)'

In addition, > H2(w*) = 1. Therefore, if //2(w, v(,)) = 0, i = 1, • • • , n — 1,

Z) (w*)
gi&w. H ^ < glbw.D2{vr*) + p = glbWid,)D2{vr) + p.

This result may also be written as

AfjCv"') < M2(v(<)) + p.

Maximizing over v(,) and noting that p is arbitrary, we have (4.1). Inequality (4.1)
agrees witn the quantitative results found for the uniform beam by Boyce [8] for zero
angle of inclination to the plane of rotation and by Schilhansl [9] for a general angle of
inclination.

As a second example, we shall see how some information concerning the effect of
twist can be obtained simply from the maximum-minimum principle. Consider a non-
rotating, twisted beam, clamped at the end s = 0. The governing equations are Eq.
(1.1) with Q = 0, Eq. (1.2) with e = 0, and Eq. (1.3). We shall also assume that EI, > EI2
for 0 < s < I. The corresponding Rayleigh quotient R is

R = J w"-B 'w"ds/J mAww

From the inequality EI, > EI2 , we see by direct computation that

EI2w" w" < w" < Ehvr"-vr".

This may also be written in terms of the unit vectors J and K as

EI2(W[" + W't") < w"-B~' w" < Eh{W['2 + W'2'2).

Consequently, if X-n)', i = 1, 2, represents the nth eigenvalue corresponding to the
Rayleigh quotient 72, defined by

R< = jl EI AW','2 + WZ'2) ds / jl mAiWl + W\

we have from the comparison theorem

A<">' < \M' < Xl*'.
The scalar differential equations which correspond to the Rayleigh quotients Ri are

{EhWV)" - mA\lWt = 0, ]* - 1,2 (4.2)
TF»(0) = Wl( 0) = W'k'{Q = Wi"{ 1) = 0, j

and similarly for R2 with the subscript 1 replaced by 2.
We note that Eqs. (4.2) represent the ordinary equations of transverse vibration of

an untwisted beam of flexural rigidity EIX and mass per unit length mA. It is important
to note, however, that the beam is capable of transverse vibration in two directions,
Wi or W2 , and hence each eigenvalue is a double one (one corresponding to Wx = 0
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and one to W3 = 0). Consequently, if we think of \{n>' or Xjn)° as the nth eigenvalue of
an untwisted beam vibrating in only one transverse direction, the appropriate inequality
becomes

x««. < x«». < X(».
x(i + l)« x(2t+l)> X(t + D'

,k = 1, 2, ••• (4.3)

Equations (4.3) thus give bounds for the frequencies of a twisted beam in terms of those
of an untwisted beam.

5. The 1 -p resonance problem. The techniques used in Sect. 2 can be applied to
yield more insight into the practical problem of 1-p resonance. This question, which
is of interest to the aircraft propeller designer, is to determine whether there is a frequency
of rotation which coincides with the lowest natural frequency of the twisted blade. If
such a frequency occurs within the operating range of the propeller, undesirable resonance
phenomena can take place. It is hoped that the following remarks will shed some light
on the mechanism responsible for 1-p resonance.

Lo and Renbarger [10] have set up the equations for a uniform, rotating bar whose
plane of bending is inclined at an angle y to the plane of rotation. The governing differ-
ential equation, in non-dimensional form, is

wlv — Ja2[(l — x2)w']' — (/32 — a2 sin2 y)w = 0, 0 < x < 1.

Here a is the non-dimensional rotational frequency and a similarly defined frequency
of vibration. Boyce [11] has shown for the clamped bar that if a < 12.36, there is no
angle of inclination y for which 1-p resonance will take place. On the other hand, if
a > 15.2, there will always be a value of y for which one can have 1-p resonance. Similar
results hold for other end conditions. In other words, if the beam rotates at a speed
above a fixed limit, inclination to the plane of rotation will produce 1-p resonance.

Now let us consider whether it is possible to have 1-p resonance in an untwisted beam
vibrating perpendicularly to the plane of rotation. In particular, we ask whether we can
find variable EI and mA distributions which will permit this type of resonance.

Equations (1.1), (1.2), and (1.3) reduce in this case to

{EIw")" - fi2[L(s)u/]' = mA\2w, 0 < s < I;

' w — w' — tEIw" = 0, s = 0; (5.1)

EIw" = (JEIw")' = 0, s = I.

For 1-p resonance X2 = if, and the differential equation becomes

{EIw")" = S22[L(s)u/]' + mAtfw

with the boundary conditions of Eqs. (5.1). This defines an eigenvalue problem for 02,
and the corresponding Rayleigh quotient is

f' EIw"2 ds + r>'(0)]2
Jo

Q2 = 0

[ mAw2 ds — f L(s)w'2 ds
Jo Jo

If there is a positive eigenvalue O2, 1-p resonance will take place.
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As in Sec. 2, let
M — max EI, v — min mA, n = max mA.

a a a

Again, the extended comparison theorems state that the positive eigenvalues if are
bounded above by the positive eigenvalues co2 which correspond to the Rayleigh principle

m[ w"2 ds + r'K(O)]2
2 JO

CO

; [' w2 ds - [' (12 - s2)w'2 ds
Jo J o

The resulting eigenvalue problem is

|Mw,v + £co2M[(Z2 - s>T = co2m,

lw(0) = «~V(0) - Mw"{0) = w"(D = w"\Q = 0.
However, this system is identical with Eq. (2.7). We have previously found that there
are no positive eigenvalues in this case unless the beam is simply supported and the
mass distribution is uniform. It is easily seen from Eqs. (5.1) that there is always an
eigenvalue X2 = Q2 in this case and 1 -p resonance takes place. Furthermore, this result
remains true for the simply-supported, twisted beam with uniform mass distribution
as is seen from the solution .

w = sK.

Our analysis has thus shown that, except for the simply-supported bar of uniform
mass distribution, there is no EI or mA distribution which will produce \-p resonance.
In other words, if the section is not inclined to the plane of rotation, this phenomenon
cannot take place.
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