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ON CURVED SHOCK WAVES IN THREE-DIMENSIONAL GAS FLOWS*

BT

R. P. KANYVAL**
Indiana University

Introduction. In this paper we discuss the problem of shock waves in three-
dimensional steady rotational flows of an ideal gas with viscosity and heat conduction
neglected and subject to no extraneous force. If a shock wave arises, e.g., as the result
of the presence of an obstacle in the field of the flow, it will be assumed that this divides
the flow under consideration into a region 1 and a region 2. We suppose region 1 to be
traversed by the gas before contact with the shock surface and region 2 to be that into
which gas enters after passing through the shock surface. It is assumed that this surface
is given by a continuous and differentiable function of coordinates and that it has a
continuous and differentiable unit normal which we suppose directed from region 1 to
region 2. Furthermore, we assume the required differentiability conditions to be satisfied
by the velocity components ut , the density p, pressure p and entropy S in each region
1 and 2 so that it is possible to express the surface covariant derivatives of these quantities
along either side of the shock surface.

If the flow in front of the shock is known then the flow behind the shock is determined
by the well-known Rankine-Hugoniot relations. The main object of this paper is to
obtain formulas for the determination of the gradients of velocity components, pressure,
density and entropy behind the shock surface when the flow in front is known. These
formulas have been obtained for plane flows by Thomas [1]. In his analysis Thomas
assumed that y, the ratio of specific heats, is constant throughout the flow. Truesdell [2]
has extended these results to fluids obeying an arbitrary equation of state. The same can
be done for the three-dimensional gas flows also, although we have carried out the calcu-
lations for the case when 7 is constant. Truesdell has further put Thomas's results in
more compact form by introducing certain dimensionless variables which have been
found useful in the following discussion also.

The required derivatives are obtained by differentiating the Rankine-Hugoniot
relations along the shock surface. Gauss-Weingarten formulas and various other results
of the geometry of surfaces concerning the principal normal curvatures are found useful
in the analysis. The complete analysis has been given only for the case of uniform flow
upstream of the shock. As anticipated, the flow behind the shock wave is found in general
to be rotational. The explicit determination of the vorticity components is carried out.
This leads to the formulation of a theorem regarding the characterization of surfaces
behind which the flow remains irrotational. It is found that the plane, the right circular
cone, the cylinder and the developable helicoid are the only such surfaces. Furthermore,
it is found that the component of vorticity along the normal to the shock surface vanishes
at every point of the surface—a property shared by the contact discontinuities which
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are surfaces across which the normal component of the velocity is continuous while the
tangential components are discontinuous.

Formal methods of tensor analysis have been used throughout the following discussion.
1. Equations of motion. We consider the differential relations governing the steady

flow of a perfect gas devoid of viscosity and heat conduction and subject to no extraneous
force, namely [3, 4],

p,i + pUjUij = 0, (equations of motion), (1)

p,,M( + pUj.i = 0, (equation of continuity), (2)

in which p, p and w, denote the pressure, density and velocity components respectively.
We assume the motion referred to a system of rectangular coordinates xx\ then the comma
in the above equations and in the following, represents partial differentiation. It is to
be understood in the above and in the following discussion, unless the contrary is stated,
that an index which occurs twice in a term is to be summed over the admissable values
of the index. Since there is no distinction between covariant and contravariant indices
within a rectangular system, we may write any index as a subscript or a superscript
without modifying the value of the term in which the index occurs.

In addition there is the equation of state, viz. [3, 4],

p = exp (S/Jcv)py, (3)

where »S is the entropy, J the mechanical equivalent of heat and 7 is the ratio of two
specific heats cp and c„ assumed constant. The entropy remains constant on a streamline
but varies from streamline to streamline i.e., <S,it, = 0. By differentiating (3) and using
the Eqs. (1) and (2) we obtain

UijUiUj - cuk,k = 0, (4)

where c = 7p/p, is the adiabatic speed of sound.
2. The Rankine-Hugoniot relations. Denote by uu , p, and p{ the velocity com-

ponents, density and pressure on the side of the wave bordering region 1 and correspond-
ingly by u2i , p2 and p2 the values of these quantities on the side of the wave bordering
region 2. Put

Win = , u2n = u2£ ,

so that uln and u2n are the normal components of the velocity on sides 1 and 2 of the
wave surface, respectively. Then the Rankine-Hugoniot relations for the stationary
wave under consideration can be written as

\U-] = ^PlU,n ~ VPJti /gs
[U'] -(7 + l)pi«ln ' (5)

r i 2(pi*Uin 77?i) /n\W <T + » ' ®

r 1 _ 2p,(p,U2ln ~ 7Pi) .
lpJ 27Pi + (7 - l)Pit4„' (7)

Here the bracket [ ] denotes the difference of the values on the two sides of the shock
surface of the quantity enclosed, e.g., [it,-] = uu — uu .
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3. Coordinate system on the shock surface. In the following analysis it has been
found convenient and advantageous to have the lines of curvature as the Gaussian
coordinate curves on the shock surface. Denote these coordinates by y1, y2. Then the
lines of curvature are y1 = constant and y~ = constant and the parametric equations
of the surface are given by

z' = xV,2/2), » = 1.2,3. (8)
As is customary we shall use Latin letters for the indices referring to the space variables

and Greek letters for the indices referring to the surface variables. Thus the Latin
indices will assume values 1, 2 and 3, and Greek indices the values 1 and 2.

The unit surface tangent vectors to the coordinate curves are [5a] 5"gu and 8a2g,2
respectively where

g<,e = 1 /(aap)l/2,

and aa/} are the components of the first fundamental form of the surface

_ dx' dx' . .
a<*p a <* a 0 ' ( 'dy dyp

while 5 is the Kronecker delta. The corresponding space components of the unit tangent
vectors are x\g^ and x\g22 respectively, where we have put

dx*
*- = 7-a- (10)dy

Then x'a are the components of a contravariant space vector and a covariant surface
vector. We shall call these quantities the components of projection tensor [6]. We have
already assumed that the normal vector to the shock surface is directed from region 1
to region 2. We further choose the orientation of the surface normal and Gaussian
coordinates in such a way that x\ , x\ and £' have the same orientation as the x1-, x2-
and a^-axis.

Now consider the velocity field w, and let f, denote the part of the velocity field
which is normal to the surface and let v( denote that part of u{ which lies in the tangent
plane of the surface. Evidently we have

M, = V{ + •

By multiplying both sides of this relation by x'a we obtain [6]

Xc\Ui = va , (11)

where we have put x^v( = va . We say that the tensor x'a projects ui onto the tangent
plane to the surface, vagaa (a not summed) being the tangential component of the
velocity along the y" curve.

Following Truesdell [2] we introduce the dimensionless variables:

= 2(p!U?„ - yp,) = vag»a
2ypi + (r — 1)pi"L ' T" wi» ' ^2)

VaQaa 71 ,r 1-hn
x" = ~ c2 '
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where a is not summed, <5 is the shock strength and ra are the components of the obliquity
of the shock. With these abbreviations the shock relations can be written as

[«.-] = , (13)

w = nb > (14)
[p] = «p, • (15)

Multiplying both sides of (13) by £,• and x'a we easily deduce

  ^In   Pl^ln
2" 1 -J- X ' (16)

1 + 0 p2

and

v2a = Via • (17)

4. Differentiation of the shock relations. Differentiating the relations (5) to (7) with
respect to y1 and y2 we get relations along the shock surface of the form

Ui,jXa = Uu.,x'a + Aia = A?a , (18)

P.iXi = Pl.jXa + Ba = B* , (19)

P.iX'a = Pl.iX'a +Ca=C*a, (20)

where for simphcity we have omitted the subscript 2 on the quantities appearing in
the left members of these equations. The explicit formulas for the quantities Aia , B„
and Ca are readily obtained by differentiating the right members of the equations (5)
to (7), respectively, with the help of the Gauss-Weingarten formulas of differential
geometry (see Sec. 6). We see that these quantities are expressible in terms of the known
parameters of the flow in the region 1 and their partial derivatives along the shock
surface, the projection tensor x„ , the surface normal £ and the two principal curvatures.
Following Thomas [1], any quantity which can be so expressed will be said, in the follow-
ing, to have an allowable determination.

5. Derivation of the partial derivatives behind the shock surface. Consider the
Eqs. (1), (2), (4), (18), (19), and (20). From this set of six relations we can determine
the partial derivatives of the velocity components u{ , the density p and the pressure p
immediately behind the shock surface. For this purpose we first eliminate the derivatives
pti to obtain the following equations, which we represent as two sets of equations for
convenience of reference, namely

P.iXi = C* , (21)

P.jUj + pwjt.i = 0, (22)

and
Ui.jX'a = A?a , (23)

pUijXaUi = — Bt , (24)

pu,jUiUj — ypuk,k = 0. (25)
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Now from (23) to (25) we can obtain uiti and then from (21) and (22) p.,- can be found;
after this the Eqs. (1) yield the values of the derivatives p.,- . To effect the above deter-
mination we define a matrix || Ci; || such that

Cia = X,„ ; Ct3 = ui/un , (26)

where \ia denote the space components of the unit tangent vector to the curve y" and
are given, as remarked above, in terms of the projection tensor by

X,„ = = x„gaa , no summation on a.

The determinant of the matrix || Ci(- || is easily seen to be unity. Hence we can define the
quantities Dik by

DikCki = 5,-# ; DkiCik = 8^ . (27)

The second relation (27) follows from the first relation and conversely. Since we shall
have to use the explicit form of the matrix jj Du ||, it can be easily seen to be given by

Du D2i D31

D12 D 22 D32

Du D23 D33

 \2ll2) (X]^2 X]^) u

Un Un 1

(Xo'U,; \2XI3) (\ 1 ̂ .3 \\U\) .

Un un 2

(\'J !"l Xg^t) (X1M1 XiM2) j.
u„ Un 3

(28)

Now define the quantities Bti by

Bit = ut,mCuCmi . (29)

Then from (23), (24), (25) and (29) we have

Baff XaAifjQaaOpB j B a3
(30)

AiaUiQaa n
J->3 a — j -°33 — it f2 1

where a, /3 are not summed.
Furthermore, by multiplying both sides of (29) by Di.D,, and using the relation

(27) we readily obtain

u,,m — BiiDilDim . (31)

Now the first eight elements of the matrix || Bu || have an allowable determination
as can be readily seen. However, B33 is given in terms of the ukk ; it therefore remains to
determine the quantity B33 . But this can easily be done by contracting the indices I
and m in (31), viz.,

Uk.k — BijDikDj/c ,

which, by the help of the matrix (28), gives the value

uk,k = Bu( 1 + Xi) + -^22(1 + X2) + 25(12)xiX2 — 2B(13)xi — 2B(23)X2 + B33 ,
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whore x's are defined by (12) and for brevity we have introduced

B(H) — ¥Pa + #y.)-

Thus we arrive at the value of B33

p -S,,(l 4" Xl) + -B22O + X2) + 2£(1V)XlX2 ~ 2/?n3,Xl — 2J3(23)X2
- Ml _I - (32)

which furnishes an allowable determination of B-n . Hence the relations (31), in which
B33 is given by (32), provide an allowable determination of the gradients of velocity
components behind the shock wave.

To effect the determination of the gradient of density behind the shock surface we
observe that the set of equations (22) and (23) can be written in the form

where

Hence we have

P,jCa di ,

di = QuC* , d2 — g22C% ,

d3 = —puk,k/un = -pB33M2Ju„ .

P.; = di Du , (33)

as the allowable determination of the quantities p, ,• . Finally from (1) the derivatives
p { behind the shock surface can be determined by the equations

V.i r — i = — punBi3Dji . (34)

6. Calculation of the invariants and Btl. It is possible to give an explicit formu-
lation of the invariants d( and Ba under the assumption that the flow in front of the
shock is uniform, i.e., the velocity, pressure, and density are constant in region 1. To
effect this formulation we need some results of the differential geometry which are briefly
stated below [5a].

We have already noted the expressions for the first fundamental form of the surface,
the projection tensor and the space components of the unit tangent vectors to the
coordinate curves. They are

• ■ • dxi
aa0 = Xa%0 , x'a - ■— , = g, a not summed,

dy

respectively. In addition we need the expression for the normal curvatures in the direc-
tions of the coordinate curves (which are the lines of curvatures and hence these curva-
tures are the principal normal curvatures). They are

ki = b\i/flu ; k2 = ^22/^22 > (35)

where are the components of the second fundamental form of the surface, i.e.;

= W'tiik*'a-.f&yx), . (36)

In the above relation eyl are the components of the surface permutation tensor with
the properties
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e» = e22 = 0; e12 = l/(a)1/2; €21 = — l/(a)I/2,

where a is the det || aaS [|, while eijk are the components of the permutation tensor
of the space with the properties

(i) e,It = 0 if any two of the indices i, j and k are equal,

(ii) 6u3 = e231 - e3u = -(-1,

(iil) <?132 = ®321 = ®213 = 1)

and x^.p denotes the surface covariant differentiation of x'a . As we have taken the lines
of curvature as the coordinate curves on the shock surface we have

&12 = ^12 = (37)

Moreover if a"e denote the components of the tensor conjugate to aaft , namely,

O = $0 l

we obtain

a11 = a22 /a, a12 = a21 = 0, a22 = a„/a. (38)

In this notation the space components of the unit normal vector to the surface are
given by the relation

r = ha"einxlxl . (39)
The well-known Weingarten formulas give

= -a^b.yx'e , (40)

where ; denotes, as before, the surface covariant differentiation. Keeping these results
and the assumption of uniform flow in front of the shock in mind, we get

Uln;a = = 1l\i& bayXfJ V/jQ , (41)

where we have used the relations (11) and (17). Expanding this result and making use
of the expressions in (35) and (38) we obtain

Uin:i — Vik\ ; Win:2 — v2k2 . (42)

Similarly, the relation (40) yields

£;i = kiXi j ^;2 — k2x2 . (43)

Now for the uniform flow

A*a = Aia , B*a=Ba, C* = C„ .

Hence we can readily find [7].

a - J2(piM?„ - 7Pi)g.
<a ~ l-e (7 + l)PlWl» J ; a

Mi + M- {-kaxLultt + ?vak.)\,
>P lWi„ Pl^ln )

(44)
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in which there is no summation on a. From (14), (30), and (44) we obtain

Bu = = 5w-fc> -
On PlWln Ctll

•®12 -B2I — 0,

B22 ~~ Sunk% ■

Also from (6) and (42) we get

yielding

and

where the relation (16) pittiB = p2u2» has been used.

Furthermore, from (44) we obtain

J* = -{b.— + (-vaka-^ + vaka
Un ( PiMln 1 + 5 \ Un

in which there is no summation on a. From this we get

~ iffu Httt + rnJ'
and

B3i = ^222 = J_* +
un \y + 1 1 + 5/

Lastly from the formula (32) we get the value of B33 as

b„ - {fa.o + x?) -

I"-'1 + ̂  - (ttt + rr?')K •

(45)

D —4ptUlnvakaBa = ;—: , no summation on a,
7 + 1

r _ B^n _ 4gnt>ifci■£*13 — — I 1 > (46)
pUn 7+1

p _ B2Q22 _ 4(722^2^2 /,,■
23 1 1 , (47)pw„ 7 + 1

(48)

(49)

(50)
+

The matrix || Bu || is thereby completely determined.
Correspondingly the are given by the expressions

di = = (7+iyt Kt - Dp - (7 + Dp,),

^ {(7 - Dp - (7 + Dp.}, (51)

d = _ pB33Ml
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From the relations (45) to (50) and the relations (51) the invariant character of
Ba and can be easily seen.

7. Variation of velocity, density and pressure along the shock surface. The rate of
change with respect to the arc length along the lines of curvature of the velocity com-
ponents Ui is given by the following formula

Ui.iX'agaa = BimDliDmix'agaa , a not summed.

When expanded this becomes

= BnDu , u,-,,X2 = BnDu . (52)

Similarly the rate of change of density and pressure is given by

P, «"X a da j

and

P,<X« = — PUnBjtDjiXa ,

which, when expanded, becomes

P,,X 1 = pUnB 13 , P.iX 2 — PUnB23 • (53)

From (52) we readily find

~ — B31 , (54)

qq.^2 — w,M,-,iX2 = B32 >

where q = tt.w,- . Thus when the flow in the region 1 is uniform the expressions for these
quantities are known from the results of Sec. 6. These results moreover give the physical
meaning 0/ the invariants Bi: and dt . For example, B3l and Bi2 are the rates of change
of half the square of the velocity magnitude along the lines of curvature as shown in (54).

Furthermore from (53) we get

V.iP.i = p'ulB,:iBkdD,JJk; ,5Q

= P\l{B\3 + B\3 + (—B13xi ~ B23X2 + S33)2!-

Thus p,i = 0 only if B13 = B23 = B33 = 0. But from (46), (47), and (12) we get

n 4r,M]nfci j-, 4:T2Ui„k2
-#13 ~ 1 1 ) &23 — _l_l"

7+1 7+1

Thus we find that Truesdell's [2] theorem in plane flows is carried over to spatial gas
flows, viz., when a uniform flow of a fluid crosses a shock, the pressure gradient cannot
vanish at any point on the rear side of the shock if the shock is curved and oblique.

8. Determination of the derivatives of entropy behind the shock. The value of
the entropy S as given by the relation (3) is

S = Jc„ log

Thus
(?)•

re t J(1 + 5)Pi +[S| _ log | pi(1 + s),.. ). <57)
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where we have used the shock relations (6) and (7).
In the case of uniform flow in front of the shock we derive, by differentiating both

sides of (57), the result

(58)

where Ea can readily be evaluated with the help of the relations (15), (20) and (42).
We also know that

S.iUi = 0,

which states that entropy is constant along the streamlines. This result and the relations
(58) can be put in a compact form with the help of the matrix (26), as

S.,Ci{ = U , (59)
where

/i = Ei , /2 = E2 , fa = 0. (60)
Inverting the relation (59) with the help of the relation (27) we obtain

$.»• = UDij . (61)

9. Curvature of the streamlines behind the shock. The curvature K of a streamline
in the flow under consideration is given by [8],

Kfii = — + ~ uk,k\\\pQ Q /\pq

where X, and n, are the components of the unit tangent vector and principal normal
vector to the streamlines. Hence , & ■■«!&*

v* _ 1 (p.iP.j £*,,2~~ 4 \ 2 ~2Uk,k J •
q \ p q /

When we make use of the results (32) and (55) we get the value of K2 as

K2 = 4 {b\3 + b\3 + (-BMl - B23X2 + B:<3y - Bb, J.
I I 1 + Xi + X2J

In this work we have confined ourselves to the evaluation of the first derivatives of
the parameters of the flow behind the shock, while to determine the torsion of the stream-
lines we require as well the second derivatives [8] which have not yet been calculated.

10. The expression for the vorticity vector behind the shock. The components of
vorticity behind the wave are given by

82
w — e it*,,■ = e BlmDnDmj = ( k]Vi<711X2 "4" ̂ 2^2922^1) j g* (62)

Now for w' to be zero it is necessary as well as sufficient that either &2/(1 5) or

( kiVign\2 4- ^2^2^22X2)

vanish. In the latter case coefficients of both \[ and XJ must vanish because XJ and AJ
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arc perpendicular t.o each other. Thus in order that the flow he irrotational behind the
shock surface at least one of the following conditions must be satisfied

(i) 5 = 0, no shock wave;

(ii) /c, and k2 are zero, i.e., the shock surface is a plane;

(iii) vi and v2 are zero, i.e., the obliquity is zero which again leads to a plane;

(iv) 7c, = 0 = v2 ;

(v) fc2 = 0 = vx .

As (iv) and (v) lead to the same result, we will discuss, for the sake of definiteness, the
case (v), viz., /c2 = 0 = w, . k2 = 0 implies that the shock surface is a developable surface
and as such its generators and their orthogonal trajectories form its two congruences
of lines of curvature [5a]; while = 0 implies that the orthogonal trajectories to its
generators are plane curves lying in the planes which are normal to the direction of the
given uniform flow in front of the shock wave.

Now with the exception of cylinders and cones every developable surface is the
tangent surface of some curve [5b] and the orthogonal trajectories of the tangent surface
of a curve are the involute of the curve [5c]. But the necessary and sufficient condition
that the involutes of a twisted curve be plane curves is that the curve be a cylindrical
helix [5d]. Moreover, the planes of the involutes of a cylindrical helix are normal to the
generators of the cylinder on which the helix lies [5e]. Therefore, if we take the helix
to lie on the cylinder whose generators are in the direction of the flow then the tangent
surface of this helix, developable helicoid, satisfies the condition (v). As far as a cone
and a cylinder are concerned it can be easily seen that the right circular cone with its
axis parallel to the direction of the uniform flow and any cylinder with generators parallel
to the direction of the uniform flow satisfy the conditions (v). We thus get the theorem:
the only shock surfaces behind which the flow remains irrotational are, a plane, a right
circular cone, a cylinder and a developable helicoid. Among these shocks the conical shocks
have been extensively studied [9]. In the case of cylindrical shock surface whose generators
are parallel to the direction of the uniform flow it is obvious that there is no discontinuity
in the flow because flow is merely tangential to the surface.

Another result follows if we multiply both sides of the Eq. (62) by £, getting w/£, = 0.
Hence, when a uniform flow breaks across a shock, the component of vorticity along
the normal to the shock wave vanishes at every point of the surface. It is interesting
to note that this property is also shared by contact discontinuities, i.e., vortex sheets,
which are singular surfaces across which the tangential component of the velocity
changes abruptly while the normal component of velocity is continuous and the expres-
sion for vorticity components on the sheets is given by [10]

w* = e<fi&[w*],

[t<t] being the jump in velocity across the vortex-sheet. The component of vorticity
normal to the three-dimensional pseudo-stationary and unsteady shock fronts has also
been found to vanish [11, 12].
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Note added in proof: The author has recently extended these results to unsteady shocks
in fluids obeying an arbitrary equation of state [12].
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