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where ¢ is a solution of
V' +a(l + 0y =o' .

Equation (5.6) can be solved by Latta’s method if ¥ (and, therefore, ¢) is an exponential
polynomial. The details of the computations, though complicated, are not impossible,
but it would serve no purpose to complete them here.
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ON THE FIRST STABILITY INTERVAL OF THE HILL EQUATION*
By C. R. PUTNAM (Purdue University)

Let A denote a real parameter and let f = f(t) be a real-valued, continuous periodic
function of period 1. It is known (Liapounoff) that the Hill equation '

'+ AN+ fz=0 [ =d/dt, {(t+ 1) = f(1)] )

is stable for A = 0, so that every solution of the equation z'’ + f(t)z = 0 is bounded,
whenever

F20, 1#0 wd [ fa<s @

see, e.g., [1], [6]. Moreover the constant 4 of (2) is the best possible in the sense that
(2) is not sufficient for the stability of z'/ + fr = 0 if the 4 is replaced by 4 + ¢ (¢, &
positive constant) [3]. If A\, and A, denote respectively the left and right end-points of
the first stability interval of (1) then the first two conditions of (2) imply A, < 0 while
all conditions together imply A, > 0 (and so A = 0 is interior to the first interval of
stability of (1)). Actually the inequality A, > 0 is implied by the single condition

f "fdt < 4, where () = max [0, {(9)] @)
(see [6]); moreover, the estimate
)\.>4—ff*dt=4(1—ifrdt) )

*Received October 28, 1957.
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easily follows. The object of this note is to obtain a “best possible” refinement of (4),
namely, 1f (3) holds, then

N> #(1 - ifo‘ 7 dt), ®)

where the equality holds only +f f = 0.

It is known that when A = ), , Eq. (1) possesses a ‘“half-periodic” solution z = y(f)
satisfying y(t + 1) = —y(¢); see, e.g., [6]. In case f = 0, this function is sin x¢ which
satisfies 7'/ + #’z = 0 (i.e, (1) for f = 0 and A = A\, = #°); thus the equality of (5)
holds in this case. It is clear then that the italicized assertion above can become false
if the #* of (5) is replaced by #°> + ¢, even if f # 0. That the assertion can become false
if the } of (5) is replaced by ¥ — e is obvious from an earlier remark concerning the
stability criterion furnished by (2).

In order to prove the italicized assertion, let y(¢{) denote the half-periodic solution
of (1) for A = A, considered above, so that y"’ + [\, + f({)ly = 0, and let a, a + 1 denote
two zeros of y. A multiplication by y of both sides of the last equation, followed by an
integration and an application of the inequality f < f*, leads to

a+1 a+1 a+1
A f y'dt > f y?dt — [ fry* dt. (6)

Since 2y(f) = [Ly ds — [2*' y' ds, it follows that 2 | y() | < f2*' | ¥’ | ds and hence,
by the Schwarz inequality, that 4y°() < [2*' y’* dt. Consequently

a+1 1 a+1 a+1
f ffy*dt < Zf f dtf y”* dt;

hence, by (6),

N fl vy dt > (1 - ifo’ f dt) f:“ y? dt. @)

In view of (3), which implies \, > 0, and the Wirtinger inequality =° [3*' y* dt < [2*'y"* dt,
where the equality holds only if y = const. sin #(f — a) (see, e.g., [2], p. 184), relation (7)
implies (5) and the proof of the italicized assertion is now complete.

Remark. The referee has pointed out an interesting parallelism between the in-
equality (5) and an inequality in a recent paper by J. Peetre (4], see pp. 16-17, for the
least eigenvalue of an eigenvalue problem for partial differential equations with a Rie-
mann metric.
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