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where ^ is a solution of

+ cw(l + = v'l ■
Equation (5.6) can be solved by Latta's method if \p (and, therefore, <p) is an exponential
polynomial. The details of the computations, though complicated, are not impossible,
but it would serve no purpose to complete them here.
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ON THE FIRST STABILITY INTERVAL OF THE HILL EQUATION*
By C. R. PUTNAM (Purdue University)

Let X denote a real parameter and let / = /(<) be a real-valued, continuous periodic
function of period 1. It is known (Liapounoff) that the Hill equation

z" + (X + M)x = 0 [' = d/dt, f(t + 1) = /«)] (1)
is stable for X = 0, so that every solution of the equation x" + f(t)x = 0 is bounded,
whenever

/ > 0> / 0 and [ f dt < 4; (2)
J 0

see, e.g., [1], [6]. Moreover the constant 4 of (2) is the best possible in the sense that
(2) is not sufficient for the stability of x" + fx = 0 if the 4 is replaced by 4 + t (e, a
positive constant) [3], If X0 and denote respectively the left and right end-points of
the first stability interval of (1) then the first two conditions of (2) imply X0 < 0 while
all conditions together imply Xt > 0 (and so X = 0 is interior to the first interval of
stability of (1)). Actually the inequality X, > 0 is implied by the single condition

f 1+ dt < 4, where f(t) = max [0, /(<)] (3)
Jo

(see [6]); moreover, the estimate

X, > 4 - £ f dt = 4(1 - | Ja f dt) (4)
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easily follows. The object of this note is to obtain a "best possible" refinement of (4),
namely, if (3) holds, then

x, > Ta(l - | fa r dt), (5)

where the equality holds only if / = 0.
It is known that when X = Xi , Eq. (1) possesses a "half-periodic" solution x = y(t)

satisfying y{t +1) = — y(t)', see, e.g., [5]. In case / = 0, this function is sin irt which
satisfies x" + ir2x — 0 (i.e., (1) for / = 0 and X = X, = ir2)) thus the equality of (5)
holds in this case. It is clear then that the italicized assertion above can become false
if the t2 of (5) is replaced by ir2 + e, even if / ^ 0. That the assertion can become false
if the j of (5) is replaced by j — t is obvious from an earlier remark concerning the
stability criterion furnished by (2).

In order to prove the italicized assertion, let y(t) denote the half-periodic solution
of (1) for X = X, considered above, so that y" + [Xi + f(t)]y = 0, and let a, a + 1 denote
two zeros of y. A multiplication by y of both sides of the last equation, followed by an
integration and an application of the inequality / < f+, leads to

f'y> dt > f1 y'2 dt - f fY dt. (6)
Since 2y{t) = j'e y' ds — f°+1 y' ds, it follows that 2 | y(t) | < /°+I | y' | ds and hence,
by the Schwarz inequality, that 4y2(t) < /°+1 y" dt. Consequently

/*o + l -i /»o +1 rtO + 1

fY dt< i / f+dt y'2 dt;
J a ■* J a J a

hence, by (6),

X, f°+1 y2 dt > (l - | £ r dt) f*1 y'2 dt. (7)

In view of (3), which implies Xi > 0, and the Wirtinger inequality ir2 /°+l y2 dt < f°+t y'2 dt,
where the equality holds only if y = const, sin x(< — a) (see, e.g., [2], p. 184), relation (7)
implies (5) and the proof of the italicized assertion is now complete.

Remark. The referee has pointed out an interesting parallelism between the in-
equality (5) and an inequality in a recent paper by J. Peetre [4], see pp. 16-17, for the
least eigenvalue of an eigenvalue problem for partial differential equations with a Rie-
mann metric.
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