A CLASS OF PROBLEMS ON LONGITUDINAL VIBRATIONS*

BY
VÅCLAV VODIČKA
Plzeñ, Czechoslovakia

1. Introduction. Consider a bar of length l and constant area q formed of n parts with lengths l_{k}, densities ρ_{k} and Young's moduli $E_{k}(k=1,2, \cdots, n)$. Denoting by $u_{k}(x, t)$ the displacement in longitudinal vibrations at the point x of the k th part and at any time t, the general form of the Laplace transform

$$
U_{k}(x, p)=p \int_{0}^{\infty} e^{-p t} u_{k}(x, t) d t ; \quad k=1,2, \cdots, n
$$

of $u_{k}(x, t)$ is

$$
\begin{equation*}
U_{k}(x, p)=A_{k} \cosh \frac{p x}{a_{k}}+B_{k} \sinh \frac{p x}{a_{k}}+W_{k}(x, p), \quad a_{k}=\sqrt{\frac{E_{k}}{\rho_{k}}} ; \quad k=1,2, \cdots, n \tag{1}
\end{equation*}
$$

There exists a vast class of cases, important from the technical and phyisical points of view, where

$$
\begin{align*}
W_{k}\left(s_{k}, p\right) & =W_{k+1}\left(s_{k}, p\right), \quad W_{k}^{\prime}\left(s_{k}, p\right)=e_{k} W_{k+1}^{\prime}\left(s_{k}, p\right) \\
s_{k} & =\sum_{k=1}^{k} l_{k}, \quad e_{k}=\frac{E_{k+1}}{E_{k}}, \quad W_{k}^{\prime}=\frac{d W_{k}}{d x} ; \quad k=1,2, \cdots, n-1 \tag{2}
\end{align*}
$$

All problems of this group may be treated in the following manner.
2. General theory. The subsidiary equations corresponding to the well-known conditions at the sections separating adjacent parts of the rod are (primes denote the x-derivatives):

$$
\begin{equation*}
U_{k}\left(s_{k}, p\right)=U_{k+1}\left(s_{k}, p\right), \quad U_{k}^{\prime}\left(s_{k}, p\right)=e_{k} U_{k+1}^{\prime}\left(s_{k}, p\right) ; \quad k=1,2, \cdots, n-1 \tag{3}
\end{equation*}
$$

Substituting from (1) and using (2) we have

$$
\begin{align*}
& A_{k} \cosh \frac{p s_{k}}{a_{k}}+B_{k} \sinh \frac{p s_{k}}{a_{k}}=A_{k+1} \cosh \frac{p s_{k}}{a_{k+1}}+B_{k+1} \sinh \frac{p s_{k}}{a_{k+1}} \\
& A_{k} \sinh \frac{p s_{k}}{a_{k}}+B_{k} \cosh \frac{p s_{k}}{a_{k}}=h_{k}\left(A_{k+1} \sinh \frac{p s_{k}}{a_{k+1}}+B_{k+1} \cosh \frac{p s_{k}}{a_{k+1}}\right) \tag{3.1}\\
& \\
& h_{k}=\frac{a_{k+1} \rho_{k+1}}{a_{k} \rho_{k}} ; \quad k=1,2, \cdots, n-1
\end{align*}
$$

[^0]or, in the matrix form,
\[

\left\|$$
\begin{array}{c}
A_{k+1} \\
B_{k+1}
\end{array}
$$\right\|=M_{k}(p)\left\|$$
\begin{array}{c}
A_{k} \\
B_{k}
\end{array}
$$\right\| ; \quad k=1,2, \cdots, n-1
\]

$$
M_{k}(p)=\| \begin{array}{r}
\cosh \frac{p s_{k}}{a_{k}} \cosh \frac{p s_{k}}{a_{k+1}}-\frac{1}{h_{k}} \sinh \frac{p s_{k}}{a_{k}} \sinh \frac{p s_{k}}{a_{k+1}}, \tag{4}\\
\sinh \frac{p s_{k}}{a_{k}} \cosh \frac{p s_{k}}{a_{k+1}}-\frac{1}{h_{k}} \cosh \frac{p s_{k}}{a_{k}} \sinh \frac{p s_{k}}{a_{k+1}} \\
-\cosh \frac{p s_{k}}{a_{k}} \sinh \frac{p s_{k}}{a_{k+1}}+\frac{1}{h_{k}} \sinh \frac{p s_{k}}{a_{k}} \cosh \frac{p s_{k}}{a_{k+1}}, \\
-\sinh \frac{p s_{k}}{a_{k}} \sinh \frac{p s_{k}}{a_{k+1}}+\frac{1}{h_{k}} \cosh \frac{p s_{k}}{a_{k}} \cosh \frac{p s_{k}}{a_{k+1}} \\
k=1,2, \cdots, n-1 .
\end{array}
$$

It follows from this that

$$
\begin{gather*}
\left\|\begin{array}{l}
A_{k+1} \\
B_{k+1}
\end{array}\right\|=Q_{k}(p)\left\|\begin{array}{l}
A_{1} \\
B_{1}
\end{array}\right\| ; \quad k=1,2, \cdots, n-1 \\
Q_{k}(p)=M_{k}(p) M_{k-1}(p) \cdots M_{2}(p) M_{1}(p) ; \quad k=1,2, \cdots, n-1 . \tag{4.1}
\end{gather*}
$$

Writing

$$
\begin{equation*}
Q_{k}(p)=\left\|q_{k}^{(\mu \nu)}(p)\right\|, \quad \mu, \nu=1,2 ; \quad k=1,2, \cdots, n-1 \tag{5}
\end{equation*}
$$

we obtain from (4.1)
$A_{k+1}=q_{k}^{(11)}(p) A_{1}+q_{k}^{(12)}(p) B_{1}, \quad B_{k+1}=q_{k}^{(21)}(p) A_{1}+q_{k}^{(22)}(p) B_{1} ;$

$$
k=1,2, \cdots, n-1
$$

and the expressions (1) become

$$
\begin{align*}
U_{1}(x, p)= & A_{1} \cosh \frac{p x}{a_{1}}+B_{1} \sinh \frac{p x}{a_{1}}+W_{1}(x, p) \tag{6.1}\\
U_{k+1}(x, p)= & {\left[q_{k}^{(11)}(p) \cosh \frac{p x}{a_{k+1}}+q_{k}^{(21)}(p) \sinh \frac{p x}{a_{k+1}}\right] A_{1} } \\
& +\left[q_{k}^{(12)}(p) \cosh \frac{p x}{a_{k+1}}+q_{k}^{(22)}(p) \sinh \frac{p x}{a_{k+1}}\right] B_{1}+W_{k+1}(x, p) ; \\
& k=1,2, \cdots, n-1 \tag{6.2}
\end{align*}
$$

Transforming the conditions at the ends of the bar leads to the equations

$$
\begin{align*}
\alpha_{0} U_{1}(0, p)+\beta_{0} U_{1}^{\prime}(0, p) & =\gamma_{0} \tag{7}\\
\alpha_{n} U_{n}(l, p)+\beta_{n} U_{n}^{\prime}(l, p) & =\gamma_{n}
\end{align*}
$$

where $\alpha_{0}, \beta_{0}, \cdots, \beta_{n}, \gamma_{n}$ depend usually on p.
By means of (6.1), (6.2) relations (7) yield a system of two equations for the un-
knowns A_{1}, B_{1}. Solving it and substituting the resultant values A_{1}, B_{1} into (6.1) and (6.2) leads to the following complicated expressions:

$$
\begin{gather*}
U_{1}(x, p)=\frac{1}{\Delta}\left(\Delta_{1} \cosh \frac{p x}{a_{1}}+\Delta_{2} \sinh \frac{p x}{a_{1}}\right)+W_{1}(x, p) \\
U_{k+1}(x, p)=\frac{1}{\Delta}\left\{\Delta_{1}\left[q_{k}^{(11)}(p) \cosh \frac{p x}{a_{k+1}}+q_{k}^{(21)}(p) \sinh \frac{p x}{a_{k+1}}\right]\right. \\
\left.+\Delta_{2}\left[q_{k}^{(12)}(p) \cosh \frac{p x}{a_{k+1}}+q_{k}^{(22)}(p) \sinh \frac{p x}{a_{k+1}}\right]\right\}+W_{k+1}(x, p) ; \\
k=1,2, \cdots, n-1 \tag{8.2}
\end{gather*}
$$

$$
\begin{aligned}
\Delta_{1}=\left[\left(\alpha_{n} \cosh \frac{p l}{a_{n}}+\right.\right. & \left.\frac{p}{a_{n}} \beta_{n} \sinh \frac{p l}{a_{n}}\right) q_{n-1}^{(12)}(p)+\left(\alpha_{n} \sinh \frac{p l}{a_{n}}\right. \\
& \left.\left.+\frac{p}{a_{n}} \beta_{n} \cosh \frac{p l}{a_{n}}\right) q_{n-1}^{(22)}(p)\right]\left[\gamma_{0}-\alpha_{0} W_{1}(0, p)-\beta_{0} W_{1}^{\prime}(0, p)\right] \\
& -\frac{p}{a_{1}} \beta_{0}\left[\gamma_{n}-\alpha_{n} W_{n}(l, p)-\beta_{n} W_{n}^{\prime}(l, p)\right]
\end{aligned}
$$

$$
\Delta_{2}=\alpha_{0}\left[\gamma_{n}-\alpha_{n} W_{n}(l, p)-\beta_{n} W_{n}^{\prime}(l, p)\right]-\left[\left(\alpha_{n} \cosh \frac{p l}{a_{n}}\right.\right.
$$

$$
\left.+\frac{p}{a_{n}} \beta_{n} \sinh \frac{p l}{a_{n}}\right) q_{n-1}^{(11)}(p)+\left(\alpha_{n} \sinh \frac{p l}{a_{n}}\right.
$$

$$
\left.\left.+\frac{p}{a_{n}} \beta_{n} \cosh \frac{p l}{a_{n}}\right) q_{n-1}^{(21)}(p)\right]\left[\gamma_{0}-\alpha_{0} W_{1}(0, p)-\beta_{0} W_{1}^{\prime}(0, p)\right]
$$

$$
\Delta=\left[\alpha_{0} q_{n-1}^{(12)}(p)-\frac{p}{a_{1}} \beta_{0} q_{n-1}^{(1)}(p)\right]\left(\alpha_{n} \cosh \frac{p l}{a_{n}}+\frac{p}{a_{n}} \beta_{n} \sinh \frac{p l}{a_{n}}\right)
$$

$$
\begin{equation*}
+\left[\alpha_{0} q_{n-1}^{(22)}(p)-\frac{p}{a_{1}} \beta_{0} q_{n-1}^{(21)}(p)\right]\left(\alpha_{n} \sinh \frac{p l}{a_{n}}+\frac{p}{a_{n}} \beta_{n} \cosh \frac{p l}{a_{n}}\right) \tag{8.3}
\end{equation*}
$$

The formulae (8.1) to (8.3) determine the Laplace transforms of the functions $u_{k}(x, t)$ which are to be found by the methods of operational calculus. The most difficult part of the problem lies in finding an explicit form of the matrix (4.1).
3. An interesting class of problems. We now proceed to treating problems characterised by the equations $h_{k}=1(k=1,2, \cdots, n-1)$, or, by (1) and (3.1),

$$
\begin{equation*}
E_{k} \rho_{k}=\text { const } ; \quad k=1,2, \cdots, n \tag{9}
\end{equation*}
$$

In this case it is possible to calculate the matrix (4.1) and our former results (8.1) to (8.3) become simpler. Physically the simplification arises from the fact that there is no reflection at the joints of the different parts.

Using the notation

$$
\begin{equation*}
\sigma_{k}=s_{k}\left(\frac{1}{a_{k}}-\frac{1}{a_{k+1}}\right), \quad \tau_{k}=\sum_{k=1}^{k} \sigma_{k} ; \quad k=1,2, \cdots, n-1 . \tag{10}
\end{equation*}
$$

we easily obtain,from (4) and (4.1)

$$
\begin{align*}
M_{k}(p) & =\left\|\begin{array}{cc}
\cosh p \sigma_{k}, & \sinh p \sigma_{k} \\
\sinh p \sigma_{k}, & \cosh p \sigma_{k}
\end{array}\right\| ; \quad k=1,2, \cdots, n-1 \tag{11}\\
Q_{2}(p) & =\left\|\begin{array}{cc}
\cosh p \tau_{2}, & \sinh p \tau_{2} \\
\sinh p \tau_{2}, & \cosh p \tau_{2}
\end{array}\right\|
\end{align*}
$$

However,

$$
M_{\nu+1}(p)\left\|\begin{array}{cc}
\cosh p \tau_{\nu}, & \sinh p \tau_{\nu} \\
\sinh p \tau_{\nu}, & \cosh p \tau_{\nu}
\end{array}\right\|=\left\|\begin{array}{cc}
\cosh p \tau_{\nu+1}, & \sinh p \tau_{\nu+1} \\
\sinh p \tau_{\nu+1}, & \cosh p \tau_{\nu+1}
\end{array}\right\|
$$

so that (4.1) yields the closed forms

$$
Q_{k}(p)=\left\|\begin{array}{cc}
\cosh p \tau_{k}, & \sinh p \tau_{k} \tag{12}\\
\sinh p \tau_{k}, & \cosh p \tau_{k}
\end{array}\right\| ; \quad k=1,2, \cdots, n-1
$$

of the fundamental matrices $Q_{k}(p)$.
Equations (8.3) then give

$$
\begin{align*}
& \Delta_{1}=\left[\alpha_{n} \sinh p\left(\frac{l}{a_{n}}+\tau_{n-1}\right)+\frac{p}{a_{n}} \beta_{n} \cosh p\left(\frac{l}{a_{n}}+\tau_{n-1}\right)\right]\left[\gamma_{0}-\alpha_{0} W_{1}(0, p)\right. \\
& \left.-\beta_{0} W_{1}^{\prime}(0, p)\right]-\stackrel{p}{a_{1}} \beta_{0}\left[\gamma_{n}-\alpha_{n} W_{n}(l, p)-\beta_{n} W_{n}^{\prime}(l, p)\right] \\
& \Delta_{2}=\alpha_{0}\left[\gamma_{n}-\alpha_{n} W_{n}(l, p)-\beta_{n} W_{n}^{\prime}(l, p)\right]-\left[\alpha_{n} \cosh p\left(\frac{l}{a_{n}}+\tau_{n-1}\right)\right. \\
& \left.+\frac{p}{a_{n}} \beta_{n} \sinh p\left(\frac{l}{a_{n}}+\tau_{n-1}\right)\right]\left[\gamma_{0}-\alpha_{0} W_{1}(0, p)-\beta_{0} W_{1}^{\prime}(0, p)\right] \\
& \Delta=\left(\alpha_{0} \alpha_{n}-\frac{p^{2}}{a_{1} a_{n}} \beta_{0} \beta_{n}\right) \sinh p\left(\frac{l}{a_{n}}+\tau_{n-1}\right)+p\left(\frac{\alpha_{0} \beta_{n}}{a_{n}}-\frac{\alpha_{n} \beta_{0}}{a_{1}}\right) \cosh p\left(\frac{l}{a_{n}}+\tau_{n-1}\right) \tag{13}
\end{align*}
$$

and the formulas (8.1), (8.2) become

$$
\begin{align*}
& U_{1}(x, p)= \frac{1}{\Delta}\left\{[\gamma _ { 0 } - \alpha _ { 0 } W _ { 1 } (0 , p) - \beta _ { 0 } W _ { 1 } ^ { \prime } (0 , p)] \left[\alpha_{n} \sinh p\left(\frac{l}{a_{n}}+\tau_{n-1}-\frac{x}{a_{1}}\right)\right.\right. \\
&+\left.\frac{p}{a_{n}} \beta_{n} \cosh p\left(\frac{l}{a_{n}}+\tau_{n-1}-\frac{x}{a_{1}}\right)\right]+\left[\gamma_{n}-\alpha_{n} W_{n}(l, p)-\beta_{n} W_{n}^{\prime}(l, p)\right] \\
&\left.\cdot\left(\alpha_{0} \sinh \frac{p x}{a_{1}}-\frac{p}{a_{1}} \beta_{0} \cosh \frac{p x}{a_{1}}\right)\right\}+W_{1}(x, p), \tag{14.1}\\
& U_{k+1}(x, p)= \frac{1}{\Delta}\left\{[\gamma _ { 0 } - \alpha _ { 0 } W _ { 1 } (0 , p) - \beta _ { 0 } W _ { 1 } ^ { \prime } (0 , p)] \left[\alpha _ { n } \operatorname { s i n h } p \left(\frac{l}{a_{n}}-\frac{x}{a_{k+1}}\right.\right.\right. \\
&\left.\left.+\tau_{n-1}-\tau_{k}\right)+\frac{p}{a_{n}} \beta_{n} \cosh p\left(\frac{l}{a_{n}}-\frac{x}{a_{k+1}}+\tau_{n-1}-\tau_{k}\right)\right]+\left[\gamma_{n}-\alpha_{n} W_{n}(l, p)\right. \\
&-\left.\left.\beta_{n} W_{n}^{\prime}(l, p)\right]\left[\alpha_{0} \sinh p\left(\tau_{k}+\frac{x}{a_{k+1}}\right)-\frac{p}{a_{1}} \beta_{0} \cosh p\left(\tau_{k}+\frac{x}{a_{k+1}}\right)\right]\right\} \\
&+ W_{k+1}(x, p) ; \quad k=1,2, \cdots, n-1 . \tag{14.2}
\end{align*}
$$

It is easy to verify that the expressions (13) to (14.2) satisfy in fact the boundary conditions (7).

Formulae (14.1), (14.2) represent the Laplace transforms of $u_{k}(x, t)$ and from this we obtain in each concrete case the completed solution by the methods of operational calculus. Several examples are given in the following section.
4. Special problems. We illustrate the preceding theoretical considerations by typical examples generalising the results given occasionally in the literature [1]. In order to have reasonable expressions we assume (9) to be valid.

All the calculations needed in each case proceed by five stages. First, one applies the Laplace transformation to the fundamental equations governing the problem and to the initial conditions. This yields the general form of $U_{k}(x, p)$, as indicated in (1), and especially also the expressions $W_{k}(x, p)$.

When the relations (2) hold, we write down the subsidiary equations corresponding to the boundary conditions at $x=0, x=l$ and obtain the values $\alpha_{0}, \beta_{0}, \gamma_{0}, \alpha_{n}, \beta_{n}, \gamma_{n}$. The third and fourth steps consist in calculating the expression Δ by (13) and the Laplace transforms $U_{k}(x, p)$ according to (14.1), (14.2). Finally, we deduce the wanted solution $u_{k}(x, t)$ by the methods of operational calculus.
4.1. Vibrations of a bar under its own weight. The upper end $x=0$ is fixed, the lower $x=l$ supported so that the displacement is zero at all points. At $t=0$ the end $x=l$ is released.

Putting $s_{0}=0$ fundamental equ:1inw of the problem with belonging initial conditions are

$$
\begin{align*}
& \frac{\partial^{2} u_{k}}{\partial t^{2}}=a_{k}^{2} \frac{\partial^{2} u_{k}}{\partial x^{2}}+g, \quad s_{k-1}<x<s_{k}, \quad t>0 ; \quad k=1,2, \cdots, n \tag{15.1}\\
& u_{k}(x, 0)=0, \quad \frac{\partial u_{k}(x, 0)}{\partial t}=0, \quad s_{k-1}<x<s_{k} ; \quad k=1,2, \cdots, n \tag{15.2}
\end{align*}
$$

Solving the corresponding subsidiary equations with respect to $U_{k}(x, p)$ and comparing with (1) gives

$$
\begin{equation*}
W_{k}(x, p)=\frac{g}{p^{2}} ; \quad k=1,2, \cdots, n \tag{15.3}
\end{equation*}
$$

Thus, the relations (2) hold.
The boundary conditions at $x=0$ and $x=l$ are

$$
\begin{equation*}
u_{1}(0, t)=0, \quad \frac{\partial u_{n}(l, t)}{\partial x}=0 ; \quad t>0 \tag{16.1}
\end{equation*}
$$

and this Jeads to

$$
U_{1}(0, p)=0, \quad U_{n}^{\prime}(l, p)=0
$$

We therefore have

$$
\begin{equation*}
\alpha_{0}=\beta_{n}=1, \quad \beta_{0}=\gamma_{0}=\alpha_{n}=\gamma_{n}=0 \tag{16.2}
\end{equation*}
$$

and (13) gives

$$
\begin{equation*}
\Delta=\frac{p}{a_{n}} \cosh p\left(\frac{l}{a_{n}}+\tau_{n-1}\right) . \tag{16.3}
\end{equation*}
$$

It then follows from (14.1), (14.2) that

$$
\begin{align*}
& U_{1}(x, p)=\frac{g}{p^{2}}\left[1-\frac{\cosh p\left(\frac{l}{a_{n}}+\tau_{n-1}-\frac{x}{a_{1}}\right)}{\cosh p\left(\frac{l}{a_{n}}+\tau_{n-1}\right)}\right], \\
& U_{k+1}(x, p)=\frac{g}{p^{2}}\left[1-\frac{\cosh p\left(\frac{l}{a_{n}}-\frac{x}{a_{k+1}}+\tau_{n-1}-\tau_{k}\right)}{\cosh p\left(\frac{l}{a_{n}}+\tau_{n-1}\right)}\right] ; k=1,2, \cdots, n-1 \tag{17.1}
\end{align*}
$$

and from this we find (with the aid of a table of Laplace transforms or by contour integration) the complete solution in the form

$$
\begin{align*}
& u_{1}(x, t)=\frac{g x}{a_{1}}\left(\frac{l}{a_{n}}+\tau_{n-1}-\frac{x}{2 a_{1}}\right) \\
& -\frac{16 g}{\pi^{3}}\left(\frac{l}{a_{n}}+\tau_{n-1}\right)^{2} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{3}} \cos \frac{(2 n+1) \pi\left(\frac{l}{a_{n}}+\tau_{n-1}-\frac{x}{a_{1}}\right)}{2\left(\frac{l}{a_{n}}+\tau_{n-1}\right)} \\
& \cdot \cos \frac{(2 n+1) \pi t}{2\left(\frac{l}{a_{n}}+\tau_{n-1}\right)} \\
& u_{k+1}(x, t)=g\left(\frac{x}{a_{k+1}}+\tau_{k}\right)\left(\frac{l}{a_{n}}+\tau_{n-1}-\frac{x}{2 a_{k+1}}-\frac{\tau_{k}}{2}\right)-\frac{16 g}{\pi^{3}}\left(\frac{l}{a_{n}}+\tau_{n-1}\right)^{2} \\
& \cdot \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{3}} \cos \frac{(2 n+1) \pi\left(\frac{l}{a_{n}}+\tau_{n-1}-\frac{x}{a_{k+1}}-\tau_{k}\right)}{2\left(\frac{l}{a_{n}}+\tau_{n-1}\right)} \cos \frac{(2 n+1) \pi t}{2\left(\frac{l}{a_{n}}+\tau_{n-1}\right)} ; \\
& k=1,2, \cdots, n-1 . \tag{17.2}
\end{align*}
$$

4.2. Bar with a mass at the end. The end $x=0$ is fixed, a mass m is attached to the other end $x=l$. The bar is initially stretched by the axial force $q S$ and at $t=0$ its end $x=l$ is released.

The fundamental equations

$$
\begin{equation*}
\frac{\partial^{2} u_{k}}{\partial t^{2}}=a_{k}^{2} \frac{\partial^{2} u_{k}}{\partial x^{2}}, \quad s_{k-1}<x<s_{k}, \quad t>0 ; \quad k=1,2, \cdots, n \tag{18.1}
\end{equation*}
$$

with

$$
\begin{align*}
u_{k}(x, 0)=S\left(\sum_{k=1}^{k-1} \frac{l_{k}}{E_{k}}+\frac{x-s_{k-1}}{E_{k}}\right), \quad \frac{\partial u_{k}(x, 0)}{\partial t}=0, \quad s_{k-1}<x<s_{k} ; \\
k=1,2, \cdots, n \tag{18.2}
\end{align*}
$$

and with the boundary conditions

$$
\begin{align*}
& u_{1}(0, t)=0 \\
& \quad m \frac{\partial^{2} u_{n}(l, t)}{\partial t^{2}}=-q E_{n} \frac{\partial u_{n}(l, t)}{\partial x}, \quad u_{n}(l, 0)=S \sum_{k=1}^{n} \frac{l_{k}}{E_{k}}, \quad \frac{\partial u_{n}(l, 0)}{\partial t}=0 ; \quad t>0 \tag{18.3}
\end{align*}
$$

give, as in the preceding case

$$
\begin{gather*}
W_{k}(x, p)=S\left(\sum_{k=1}^{k-1} \frac{l_{k}}{E_{k}}+\frac{x-s_{k-1}}{E_{k}}\right), \quad \alpha_{0}=1, \quad \beta_{0}=\gamma_{0}=0 \tag{19}\\
\alpha_{n}=1, \quad \beta_{n}=\frac{q E_{n}}{m p^{2}}, \quad \gamma_{n}=S \sum_{k=1}^{n} \frac{l_{k}}{E_{k}}
\end{gather*}
$$

Thus, we find without difficulty

$$
\begin{equation*}
\Delta=\sinh p\left(\frac{l}{a_{n}}+\tau_{n-1}\right)+\frac{q E_{n}}{m p a_{n}} \cosh p\left(\frac{l}{a_{n}}+\tau_{n-1}\right) \tag{20}
\end{equation*}
$$

and formulae (14.1), (14.2) yield

$$
\begin{align*}
& U_{1}(x, p)=\frac{S x}{E_{1}}-\frac{q S}{m} \cdot \frac{\sinh \frac{p x}{a_{1}}}{p\left[p \sinh p\left(\frac{l}{a_{n}}+\tau_{n-1}\right)+\frac{q E_{n}}{m a_{n}} \cosh p\left(\frac{l}{a_{n}}+\tau_{n-1}\right)\right]} \\
& U_{k+1}(x, p)=S\left(\sum_{k=1}^{k} \frac{l_{k}}{E_{k}}+\frac{x-s_{k}}{E_{k+1}}\right) \tag{21.1}
\end{align*}
$$

$$
\begin{array}{r}
-\frac{q S}{m} \cdot \frac{\sinh p\left(\tau_{k}+\frac{x}{a_{k+1}}\right)}{p\left[p \sinh p\left(\frac{l}{a_{n}}+\tau_{n-1}\right)+\frac{q E_{n}}{m a_{n}} \cosh p\left(\frac{l}{a_{n}}+\tau_{n-1}\right)\right]} \\
k=1,2, \cdots, n-1
\end{array}
$$

The solution is

$$
\begin{gather*}
u_{1}(x, t)=\frac{S x}{E_{1}}\left(1-\frac{a_{n}}{a_{1}} \frac{E_{1}}{E_{n}}\right)+\frac{2 q S}{m}\left(\frac{l}{a_{n}}+\tau_{n-1}\right)^{2} \\
\cdot \sum_{\rho=1}^{\infty} \frac{\sec \delta_{\rho}}{\delta_{\rho}\left[\left(\frac{l}{a_{n}}+\tau_{n-1}\right) \frac{q E_{n}}{m a_{n}}+\left(\frac{l}{a_{n}}+\tau_{n-1}\right)^{2}\left(\frac{q E_{n}}{m a_{n}}\right)^{2}+\delta_{\rho}^{2}\right]} \sin \frac{\frac{\delta_{\rho} x}{a_{1}}}{\frac{l}{a_{n}}+\tau_{n-1}} \cos \frac{\delta_{\rho} t}{\frac{l}{a_{n}}+\tau_{n-1}} \\
u_{k+1}(x, t)=S\left[\sum_{k=1}^{k} \frac{l_{k}}{E_{k}}-\frac{s_{k}}{E_{k+1}}-\frac{a_{n} \tau_{k}}{E_{n}}+\frac{x}{E_{k+1}}\left(1-\frac{a_{n}}{a_{k+1}} \frac{E_{k+1}}{E_{n}}\right)\right] \\
+\frac{2 q S}{m}\left(\frac{l}{a_{n}}+\tau_{n-1}\right)^{2} \sum_{\rho=1}^{\infty} \frac{\sec \delta_{\rho}}{\delta_{\rho}\left[\left(\frac{l}{a_{n}}+\tau_{n-1}\right) \frac{q E_{n}}{m a_{n}}+\left(\frac{l}{a_{n}}+\tau_{n-1}\right)^{2}\left(\frac{q E_{n}}{m a_{n}}\right)^{2}+\delta_{\rho}^{2}\right]} \\
\cdot \sin \frac{\delta_{\rho}\left(\tau_{k}+\frac{x}{a_{k+1}}\right)}{\frac{l}{a_{n}}+\tau_{n-1}} \cos \frac{\delta_{\rho} t}{\frac{l}{a_{n}}+\tau_{n-1}} ; \tag{21.2}
\end{gather*}
$$

The $\delta_{\rho}(\rho=1,2, \cdots)$ are the positive roots of

$$
\begin{equation*}
\delta \tan \delta=\left(\frac{l}{a_{n}}+\tau_{n-1}\right) \frac{q E_{n}}{m a_{n}} . \tag{21.3}
\end{equation*}
$$

4.3. Collision of two rods. Two equal rods of the kind treated above move longitudinally in opposite directions with equal speeds v and collide at $t=0$, at the origin $x=0$. By symmetry we consider only the rod $0<x<l$ and so long as the rods are in contact we have the equations

$$
\begin{equation*}
\frac{\partial^{2} u_{k}}{\partial t^{2}}=a_{k}^{2} \frac{\partial^{2} u_{k}}{\partial x^{2}}, \quad s_{k-1}<x<s_{k}, \quad t>0 ; \quad k=1,2, \cdots, n \tag{22.1}
\end{equation*}
$$

with the initial conditions

$$
\begin{equation*}
u_{k}(x, 0)=0, \quad \frac{\partial u_{k}(x, 0)}{\partial t}=-v, \quad s_{k-1}<x<s_{k} ; \quad k=1,2, \cdots, n \tag{22.2}
\end{equation*}
$$

and with

$$
\begin{equation*}
u_{1}(0, t)=0, \quad \frac{\partial u_{n}(l, t)}{\partial x}=0, \quad t>0 \tag{22.3}
\end{equation*}
$$

From this we obtain, as before

$$
\begin{gather*}
W_{k}(x, p)=-\frac{v}{p}(k=1,2, \cdots, n) ; \quad \alpha_{0}=\beta_{n}=1, \quad \beta_{0}=\gamma_{0}=\alpha_{n}=\gamma_{n}=0 \tag{23.1}\\
\Delta=\frac{p}{a_{n}} \cosh p\left(\frac{l}{a_{n}}+\tau_{n-1}\right) \tag{23.2}
\end{gather*}
$$

and formulae (14.1), (14.2) become

$$
\begin{align*}
& U_{1}(x, p)=-\frac{v}{p}\left[1-\frac{\cosh p\left(\frac{l}{a_{n}}+\tau_{n-1}-\frac{x}{a_{1}}\right)}{\cosh p\left(\frac{l}{a_{n}}+\tau_{n-1}\right)}\right] \\
& U_{k+1}(x, p)=-\frac{v}{p}\left[1-\frac{\cosh p\left(\frac{l}{a_{n}}+\tau_{n-1}-\tau_{k}-\frac{x}{a_{k+1}}\right)}{\cosh p\left(\frac{l}{a_{n}}+\tau_{n-1}\right)}\right] \\
& k=1,2, \cdots, n-1 . \tag{24.1}
\end{align*}
$$

Hence, the solution is

$$
\begin{align*}
& u_{1}(x, t)=\frac{8 v}{\pi^{2}}\left(\frac{l}{a_{n}}+\tau_{n-1}\right) \cdot \sum_{r=0}^{\infty} \frac{(-1)^{r+1}}{(2 r+1)^{2}} \cos \frac{(2 r+1) \pi\left(\frac{l}{a_{n}}+\tau_{n-1}-\frac{x}{a_{1}}\right)}{2\left(\frac{l}{a_{n}}+\tau_{n-1}\right)} \sin \frac{(2 r+1) \pi t}{2\left(\frac{l}{a_{n}}+\tau_{n-1}\right)} \\
& \begin{aligned}
& u_{k+1}(x, t)=\frac{8 v}{\pi^{2}}\left(\frac{l}{a_{n}}+\tau_{n-1}\right) \\
& \cdot \sum_{r=0}^{\infty} \frac{(-1)^{r+1}}{(2 r+1)^{2}} \cos \frac{(2 r+1) \pi\left(\frac{l}{a_{n}}+\tau_{n-1}-\tau_{k}-\frac{x}{a_{k+1}}\right)}{2\left(\frac{l}{a_{n}}+\tau_{n-1}\right)} \sin \frac{(2 r+1) \pi t}{2\left(\frac{l}{a_{n}}+\tau_{n-1}\right)}
\end{aligned} \\
& k=1,2, \cdots, n-1
\end{align*}
$$

5. Final remarks. For $n=1$ the formulae for $u_{1}(x, t)$ in (17.2), (21.2) and (24.2) change into the well-known elementary results given in the literature [1].

Our preceding deductions may serve as a kind of guide in treating other problems on vibrations of composite continua. A special example has been discussed in detail in the author's paper given in the literature [2]. The method of matrix analysis can be used also in treating other important questions of engineering such as torsional oscillations [3], conduction of heat [4, 5], etc.

References

1. H. S. Carslaw and J. C. Jaeger, Operational methods in applied mathematics, 2nd ed., Oxford University Press, 1947
2. V. Vodička, Longitudinal vibrations of a composite bar, ZAMP 7, 345 (1956)
3. L. A. Pipes, Electrical circuit analysis of torsional oscillations, J. Appl. Phys. 14, 352 (1943)
4. V. Vodička, Conduction of fluctuating heat flow in a wall consisting of many layers, Appl. Sci. Research A5, 108 (1955)
5. V. Vodička, Heat waves in multilayer cylindrical bodies, Appl. Sci. Research A5, 115 (1955)

[^0]: *Received April 16, 1956; revised manuscript received July 26, 1956.

