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ASYMPTOTIC SOLUTIONS OF A CLASS OF ELASTIC SHELLS
OF REVOLUTION WITH VARIABLE THICKNESS*

BY

C. NEVIN DeSILVA and P. M. NAGHDI
University of Michigan

1. Introduction. Since the pioneer work of H. Reissner [1] and Meissner [2, 3] on
the small axisymmetric deformation of thin elastic shells of revolution, numerous in-
vestigations on this subject have dealt with shells of uniform thickness, but comparatively
little attention has been given to shells of non-uniform thickness. Meissner in [3], follow-
ing an analysis of shells of revolution of variable thickness (to which further reference
will be made presently), treated the case of conical shells of linearly varying thickness
in detail. Other contributions on shells of revolution of variable thickness have been
made by Ekstrom [4] and Spotts [5] for spherical shells, and by E. Reissner [6] for shallow
shells of revolution. In a recent paper by the present authors [7], the differential equations
of shells of revolution with small axisymmetric displacements, as given by E. Reissner
[6], were combined into a single complex differential equation, a solution of which, valid
at a turning point1 of the differential equation, may be obtained by a more recent method
of asymptotic integration due to Langer [8]. These results were subsequently applied to
ellipsoidal shells of uniform thickness [9], yielding a solution valid at the apex of the shell
where a regular singularity occurs in the differential equation.

In the present paper, with reference to the differential equations given in [6] and [7],
a class of shells of revolution of variable thickness is further examined. First, the impli-
cations of the thickness variation specified in [7] which led to the complex differential
equation in a form amenable to treatment by Langer's method of asymptotic integration
are studied in detail and then asymptotic solutions are given which are valid at turning
points of the differential equation.

2. The basic equations of shells of revolution. With the use of cylindrical co-
ordinates r, 0, z, the parametric equation of the middle surface of the shell may be
written as

r = r(£), z = z(£). (2.1)

Denoting by 4> the inclination of the tangent to the meridian of the shell, then

r' = a cos 0, z' = a sin <j>, (2.2)

n = a/tj}', r2 = r/sin <f>, (2.3)

where
« = [(O2 + (z')2]1/2> (2.4)

'Received June 19, 1956. The results presented in this paper were obtained in the course of research
sponsored by the Army Office of Ordnance Research under Contract DA-20-O18-ORD-12()99 with the
University of Michigan.

xSuch points are defined here as ones at which 'J'2 (see equation (2.6)) vanishes to some degree
y > —2 and/or A has a simple or a double pole. It should be mentioned that this definition of turning
point (sometimes called transition point) includes the usual definition given by Langer where y is re-
stricted to be a positive integer.
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Ti and r2 are the principal radii of curvature of the middle surface, and prime denotes
differentiation with respect to £.

The appropriate expressions for the stress resultants JV£ and N, , the stress couples
M| and M, , and the transverse shear stress resultant Q are given in [6] as well as [7]
and will not be repeated here. We recall, however, that as in [6], it is convenient to
express Ni and Q in terms of "horizontal" and "vertical" stress resultants, H and V,
given by

aN( = r'H + z'V, aQ = -z'H + r'V. (2.5)

By proper elimination between the stress strain relations and the differential equations
of equilibrium and compatibility, E. Reissner in [6] deduced two coupled second-order
differential equations governing the small axisymmetric deformation of shells of revolu-
tion which, while they differ only slightly from the previous formulation of the theory
due to H. Reissner and Meissner, contain certain advantages. It was shown in [7], that
the differential equations of shells of revolution, as given in [6], may be combined into
the following complex differential equation:

W" + [»W(Q + A®]W = (£•$" WW + ikG], (2.6)

provided k, given by

k - -? (* -1)+11 - [M"x -1)]*}'" <2-7)
is a constant.

The various quantities appearing in (2.6) and (2.7) are defined by

Eh2

A _ l(r/«)" , l|~(r/tt)'T _ (r'V 3 r/a)' h' 3 (h'Y
2 (r/a) 4 L(r/a) J \r ) 2 (r/a) h 4 \h /

3/T
2 h

m7(£) = ^ , m1 = 12(1 - „'),
(2.8)

-[*'] "kr'/aY , o *1"
\ (r/a) r h

where /3 is the negative change in $ due to deformation; h0 is the value of the thickness
h at some reference section; F and G, as in [7], are functions of the load intensity; and
E and v are Young's modulus and Poisson's ratio, respectively.

As pointed out in [7], the condition imposed for the validity of (2.6), namely that k
or equivalently (v\ — 5/2) is a constant (say — K/h0) results in the following differential
equation for the thickness h:
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(f>" + - (©"' + (3'"]" (i)K'® <2-9>
the solution of which, since

f m - da =J a n h0

may be written as

h = r'jtf, J r-(l+"az + c, + c2 J r-(l + "a dfj, (2.10)

where cx and c2 are constants of integration, and K, = Km/n2h0 ■ It should be mentioned
here that the form of thickness variation specified by (2.10) was first obtained by Meissner
[3].

In order to isolate the terms in the coefficient functions of W which involve derivatives
of h, we modify (2.6) into a new normal form as follows. From (2.9),

, (iMLK] _ _3^/_3 (ry«r _3
2 L h (r/a) h J 2 h 2V (r/a) 2" r h

which expression occurs in A. Also, the function SF2 in (2.8) may be written as

+ + 37ir}- (212)
Substitution of (2.11) and (2.12) into (2.6) after considerable manipulation results in

W" + [»V*J + (A0 + A»)]IF = R, (2.13)
where

«-(*- rfXrH <214>
» = _ 3//V _ 1 (cA* , 1 (cA' _ (1+v) (ir'/a)' (.
0 4 \r / 4 \a / 2 \a / 2 (r/a) ' (2'15)

3 h' fr' 1 h'\
h 2" h\r 2 vh) (216)

and R denotes the right hand side of (2.6).
We choose £ = <£ (i.e., ri = a), and proceed to examine the character of h as given by

(2.10) in the neighborhood of $ = 0, and the corresponding behavior of the coefficient
functions of W in (2.13), with the aim of obtaining solutions of (2.13) valid at turning
points of the differential equation. To this end let the principal radii of curvature be
of the form

U = <t>b' it, Vn<t>n,

(2.17)
CO

U = <t>b' 1n<t>n,
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where the power series representing non-vanishing analytic functions are uniformly
convergent in the real interval 0 < <#> < <t>*. Substituting (2.17) into the expression
for r' involving both r, and r2 (by (2.2) and (2.3)), and equating the coefficients of like
powers in <t> lead to two cases. In one case b2 = — 1 (and bi = 0, 1) and in the other
bi = b2 = b — 1. These cases are considered in detail in Sees. 3 and 4.

3. Case A: Behavior of shell thickness specified by (2.10) and solution of Eq.
(2.13), when b2 = — 1. In this case two possibilities occur: (1) bt = —b2 = 1 and
qi = 0, and (2) b2 — — 1, bi = 0, and = p0 ■

(1) For the first possibility, it follows that

and by (2.10)

where

= E qW (3.1)

h = £ h.<t>', (3.2)

Q* — ?o > q* — 9i j ~ ~ g j »= q2 - , etc (3.3a)

h0 = h(0) = Clqo , /i, = 0, h2 = Lh0 & + i c2 22), etc. (3.3b)
\ q0 * q0/

We note that lim^_0 A' = lim^0 (2A2 <^>) = 0 and that h in (3.2) is a non-vanishing analytic
function. By (3.1) and (3.2),

' , »-0- = * —

E(n + 2)qi+24>n

h~

E
n-0

E (w + 2)/i„+24>"
w—Q

EM"

(3.4)

and from (2.8)

T E - <*>"T- •» fe)fe)' - (*'> M
n-0 </0

Substitution of (3.4) and (3.5) into (2.14), (2.15) and (2.16) results in

*r*(o) = fc-|;^

A0 = -|^"2 + A*.

(3.6)
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where and A* are analytic in 1$ . Similarly since

lim Ai = lim 3„ M22 - 1 (3-7)
♦-.0 h„ \q0 vhj

A4 is also analytic in I<t>.
Following Langer [8], in view of the character of the coefficient functions ^ , A0 ,

and Aa (as given by (3.6) and (3.7)), a solution of the homogeneous differential Eq.
(2.13) asymptotic with respect to n2 (k —3i/2 Kx/m) to the true solution is2 given by

W = 4>-3M*rl/2*l/2[AJ2/5(r,) + BJ-Uv)] (3.8a)

where

ri = i3/2n<t>, 4- = f* <3/2*!(<) dt (3.8b)
Jo

and J and F (to be introduced later) denote Bessel functions of the first and second
kind respectively.

Evidently neither ft, nor its derivative, influences the order of the Bessel functions in
(3.8a). Hence this solution is also valid when ft is uniform, provided k is approximated
by a constant. It should also be mentioned that the behavior of ft as given by (3.2) and
(3.3) is similar to that discussed by Meissner [3], where r was assumed to have the form
r = q0 cosn<f>.

(2) With bi = 0 and b2 = 1, again r is given by (3.1) and (3.3a), and the function
ft is of the form (3.2) but the coefficients hn become

h0 = ft(0) = ciq'0 , ft, = v22 + c2 29 , etc. (3.9)
Qo <?o

It is clear that ft, given by (3.2) and (3.9), as well as ft', are non-vanishing analytic
functions in I<t>.

While n2 is again given by the first of (3.5), the function /, by (2.8), becomes

[if*-] (3-10)

n = 0 ?/0

and since qi ^ 0, the expressions which correspond to (3.4) and (3.6), are

X) (n + l)g?+i0nr
r

K
ft

n«=0

oo

X) (n + l)ft„+i <t>"
(3.11)

Z hn4>"

aA statement of Langer's theorem may be found in Sec. 5 of Ref. [10].
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¥? = **?\ *f2(0) = (k - | i ^),

. ■ 3 hi (q± J_ hi\
k( ) 2 " K \<7o 2v hj

(3.12)

and the function A0 (not recorded) may be shown to be analytic in I<f>. Again, an
asymptotic solution of the homogeneous equation (2.13) with respect to n2 [(fc — (3/2) i
(i£,/wi)] is given by

w = 4>-l/,*rl/i*ul[AJin(v) + ,)], (3.13a)

where

V = »3/V<*<• (3.13b)
Jo

It is apparent that the remark which follows (3.8) concerning shells of uniform
thickness is equally applicable to the above solution. Before closing this section, we
illustrate the foregoing results [Eqs. (3.9) to (3.13)] for a toroidal shell, where the principal
radii of curvature of the middle surface may be specified by

where R is the radius of the circular cross section and a is the distance from the center
of the cross section to the axis of revolution. It follows from (2.17), that

pa = R, pn = 0 for n > 1,

Qo = a, Qi = R, etc.

and by (3.5) and (3.10),

-• = (!)©-

Hence the function ^ and $ in solution (3.13a) become

«■-(*-—F-

(3.15)

(3.16)

(3.17)

where h is given by (3.2) and (3.3).
For toroidal shells of uniform thickness the above solution reduces to that given by

Clark [11], in which case h = h0 = KtR/v conforms to (2.10) with c, = c2 = 0, and
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4. Case B: Behavior of shell thickness specified by (2.10) and solution of Eq. (2.12)
when bi = b2 —1. In this case, with bx = b2 = b 9^ — 1, it follows from (2.2), (2.3),
and (2.17) that

22 = 1 + b, ^ = 2 + b, etc. (4.1)
Qo ?i

and by (2.10)

J _ f,(0) + c+ K,V. „ + 2 + „ FM (4.2)

and

h' = -^F'M) + Ciq'0( 1 + bW^-'FM) + KlPo - + 2b+Jh — 1} ̂ +'F5(^). (4.3)

The functions F, (j = 1, 2, 3, 4, 5) in (4.2) and (4.3) are defined by

= -vr' [ r-<1+"« tf<*> = £
*/ n=0

. F,(0) - i, /,1-,/|\+t_>1[g-(i+,)%] + ■■%, „c.
(4.4)

(1 + b)v

FM) = [q'od>a+i)ry, F2( 0) = 1, (4.5)

FM - [p. a t 2 I, + 3 - + 1 «0) - 1.

= FM) + JT+yf„ F&<t>)
i _i_ 91 (1 + b)» + 1 , ,

= 1+"^ (1 + b)y * +

F.(*) = F,fo) + ^2 ™

3 + b f(2 + 6) — „(1 + b) rPl 5 + 26 ?11 ,,,
- 1 + 2 + b 1(3 + b) - V(l + b) U 3 + b ~ (1 + y) J + " 3„r

2i

(4.6)

14.7)

(4.8)

+ 0 0(1),
where 0(1) denotes a bounded function.

With Ki 9*- 0, examination of (4.2) reveals that h is bounded at </> = 0 if 6 > — 2 and
either cx = 0 or (1 + b) v > 0. Likewise with Ki ^ 0, h' (0) is bounded provided b > — 1
and either ^ = 0 or (1 + b)v > 1. Thus, the requirement that both h and h' be bounded
at 4> = 0 when Ki ^ 0 gives rise to the following restrictions3.

b > -1, v > 0, K ^ o (4-9a)

c, = 0 or (1 + b)v > 1. (4.9b)

"Although in the linear theory of elasticity, Poisson's ratio v may have the range — 1 < v < 1/2,
as is usual on physical grounds, the negative values of v are ruled out here.
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It may be noted that, in addition to conditions (4.9), if in (4.4) we set fn = 0, then
V (0) = 0.

If only condition (4.9a) is imposed on (4.2) and Ci ^ 0, then h is continuous in /+
and h' at </> = 0 reduces to

lim h' = lim {-- /„ + «i9S(l + b)<t>n+h)'A. (4.10)
*-.0 4-0 \ v )

It is clear by (4.9b) that, if (1 + b)v < 1, then h'(0) will not be bounded and, consequently,
a drastic change of h will take place in the neighborhood of <j> = 0. In the case of ellipsoidaL
shells, for example, this situation leads to the occurrence of a cusp-like variation in h
about <#« = 0.

With the restriction imposed by (4.9a), i.e., b > — 1, v > 0, it follows from (2.8),
(2.17), and (4.1), that

M2 = mg(i + 6),

/ = (**)
fsH' (4.11)

We now proceed to examine the character of A0 and Ah given by (2.15) and (2.16) in
the neighborhood of <f> = 0. For this purpose, we record the following expression:

3
2"

Krl _ I /VY = 3 , (1 + b)2Clq'„ n+b),
h0 r 4 \h0) 2 " <t>2 h0

• |l + <t>20(1) - + ^0(l)]j

+ !y(1 + 6)/,,{i + #xd

Ki 1 + b Poyo (1 + 4>0(1)) (4.12)
h0 /n 2+6- HI + b)

1 I _i_ Po ^ ^+ ^
1 + *0(1) + h<) fn2+h_ „(1 + b)<t>

Clio ,(1+1)"'~T„"0 L

.«+ ««]■+,!£*£♦■-■[(£-J
qi 1 + (1 + b)v\ n c,q'0 qt 1 + (1 + b)v _,(!+»>,

+ Vi0 (1 + b)v )~2V K qo (1 + b)v *

and write A0 as

+ Gi(<t>)

A0 = -j- + ~r + Ao > (4.13)<p <P
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where

A, = —| (4b* + 86 + 3),.
(4.14)

Bi - -5(1 + b)*fe - 2i) + |E1
\<7o Qo' 2 p0

3
2 v" 1 \q0 qj ' 2 p0

and Gt and A*0 are analytic in I<f>.
Denoting by A the sum of A„ and A*, then with the aid of (2.16), (4.14), and (4.13),

we have
A* R*

A = 4r + + A. , (4.15)<p <p
where A! is continuous in I<t>, and

At - A, + !*2(1 + b)'*JV,+H'[l - ^gVl+6>'],

Bt = B, + | v(l + 6)/„{l + fi o _i , P°n , h) <t>l+"2 L ho fu 2 + ft — (1 + b)v ^ 16^

1 I Pa 1 4~ b  . l+5 j
ho * L1 + fto /„2+ b - (1 + b)v J

_L 1 + bclgo ,(H-»>r/,P' gl .1 gl 1 + (1 + b)v\
" fu ho LVpo q0 " qo (1 + b)v /

n®l?o 2l 1 + (1 + b)v ,(1+6)1.11
~2' k i. (i +* Jr

If now condition (4.9b) is also imposed, two possibilities will result which will be
considered separately: (1) cl = 0 and (2) (1 + b)v > 1.

(1) With Cj = 0, the functions A\ and B* in (4.16) simplify as follows:

A*! = Ai ,

B-, - B, +|-d + !.)/„[■ + 1-Jtk%2+<,-a +»,*"']■ (4'17»

Since B*t , as given by (4.17), makes no contribution4 to the asymptotic solution of
(2.13), it follows that, in the neighborhood of <j> = 0, the behavior of A is dominated by
AJip2. Also the function ^ by (2.14) and (4.11) may be written as

*? = *f2(0) = * ~ | * ff" (4.18)
Hence, with (4.15), (4.17), and (4.18), an asymptltic solution of (2.13) with respect to
u2[k — diK1/(2m)] is given by

w = 4>-b/4*r1/2*l/2[AJ2lb+lWb+2(v) + BY2ib+1Wb+2(v)], (4.19a)

■•This may readily be seen if one introduces the transformation <t> = s2/4, W = s1'2 U into (2.13),
in which case the transformed A reads as (—3/4 + 4A*)/s2 + B* s2/4 Ai where the last two terms
are continuous in 1,.
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where

r, = i3/2n$, $ = [ dt. (4.19b)
Jo

(2) Here Eqs. (4.11) and (4.16), which have been deduced under condition (4.9a),
i.e., b > — 1 and v > 0, are to be further restricted so that (1 + b)v > 1.

Since for (1 + b)v > +2, Ak is continuous in I<t>, solution (4.19) is again valid in the
neighborhood of <t> = 0. Also, when 0 < (1 + b)v < 2, lim^0 At = A, and hence, (4.19)
is a valid asymptotic form of W in the neighborhood of <f> = 0.

As an illustration of the above results consider an ellipsoidal shell, the middle surface
of which is specified by r2/a + z2/c2 = 1. The principal radii of curvature may then
be written as

(4.20a)rx = a(c/a) '[1 — e2sin2<>] 3/2,

r2 = a(c/o)_1[ 1 — t sin2 <£]"l/2,

where

e2 = 1 - (a/c)2. (4.20b)

Comparison of (4.20) and (2.17) yields

6 = 0,

p0 = a(c/a)-1, pi = 0, p2 = (3a/2)(c/a)~V etc., (4.21)

q0 = a(c/a)_1, = 0, q2 — (a/2)(c/a)~V etc.

(4.22a)

and by (4.11) and (2.14)

fi2 = m(a/h0)(c/ay1,

/ = (1 - e2 sin2 <t>)~5/2,

*•' - - (* -tW11 - ''sin' *>""■ (4m)
Thus by (4.19) we finally have

W = *r1/2*l/3[AJ1(v) + BYM], (4.23)

where y and $ are evaluated by (4.19b) and (4.22b).
It may be noted that for ellipsoidal shells of uniform thickness, solution (4.23)

reduces to that given previously in [9], where k [defined by (2.7)] is approximated to a
constant. In the case of spherical shells of uniform thickness, (c/a = 1), however, no
such approximation is necessary, since k = i (v/#i2) + [1 — (v/n2)2\[/2 and h = h0 =
(Ki/p)a.

5. Reduction to the theory of shallow shells. We conclude the present paper with
the special forms of the several solutions given in Sees. 3 and 4 (cases A and B) approp-
priate in the theory of shallow shells of revolution, where attention is confined to small
values of the meridional coordinate <t>. Thus in what follows, in the series representa-
tion of the functions involved only terms up to and including <f> will be retained.



1957] ELASTIC SHELLS OF REVOLUTION WITH VARIABLE THICKNESS 179

111 addition we also note that since (V\ — 8/2) = —K/h0 = —ix2{Ki/m) then with the
restriction K/h0 <5C n2, it follows from (2.7) that

k = 1
and

, 3 . Kik — -i — = 1.2 m

By imposing the above stipulations, we now proceed to reduce the solutions given in
Sees. 3 and 4 to those valid for shallow shells of revolution.

Case A:

(1) b, = -b2 = 1, = 0.

From (3.2), h/h0 = 1

and hence by the first of (2.8), (2.17) and (3.1)

W = -|N)o3 + *». (5.1)
Also by (2.14), (3.5) and (3.6)

and hence (3.8) becomes

** = 1 + ^ <#>
Vo

W = <*>1/2[l - i *][AJ1/5(„) + BJ_V.(,)], (5.2)

+ <6-3>•3/2 217 = 1 5

(2) bj = 0, b2 = -1, 51 = p0 •

From (3.9) and (3.2)

where

So

Again by the first of (2.8), (2.17), (3.1) and (5.4),

£-'+£♦■ <5-4>

w'-[1+!fe+3fe-£>](<s+«'> (5-6)
and by (2.14), (3.10) and (3.12)

2 \Qo ho PoJ
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with the aid of which (3.13) yields

w " *"{1 + To fe +1 - 2 <5'7>

'-<MS[-5S]l1-nfe+fe-*SVy"- (58)
Case B: bt — b2 = b ^ — 1.

Because of the several possibilities for the form of the thickness variation discussed
at length in the previous section, the determination of the specific coefficients for the
series expansion of any one of these possible forms of h (which can be deduced in a straight-
forward manner) will not be considered here.

It follows from the first of (2.8) that

w - (sPl1+1 (t - SV]»+**> (5-9)
and by (2.14), (3.6) and (4.11),

(5-io)

Hence (4.19a) becomes

W = " K2 fo ~ (5-11)
where j; is defined by (4.19b) and (5.10).

When h is uniform (in which case, as discussed earlier, k is approximated by a con-
stant), with the aid of (4.19b) and (5.10), (5.11) reduces to

W = *1/2[l - 1/4(2(Pb/2'V~2)g''/g°) *]+ BY>»«)/«♦.>(*)], (5-12)

where

• - f"[im T£  "['+H21 - J) mri 4 <513>
As an example of the foregoing solution (5.12), we now consider the case of shallow

paraboloidal shells of revolution, the middle surface of which is specified by

, - (£)", (=■")

where n(n > 1) is a rational number. Also, the principal radii of curvature of (5.14) are

= ——- sec3 <f>(tan </>)'"'" (5.15)n—1

= a (tan ^>)1/(n""

*2 n — 2 sin <£ '
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where a, as a representative length, is given by

ll/Cn-l)
(a0\a = a„y

Expansion of (5.15) in the series form of (2.17) leads to

6 = - -1,n — 1

Po = ^Ta, Pl=0, etc., (516)

q0 = a, 5i = 0 etc.,

the substitution of which in (5.12) and (5.13) results in the following solution for uniform
shallow paraboloidal shells

W = <t>1/2[AJM + BY,M (5.17)

where

V = H4™ f . (5.18)L Ai0 n J

The above example of shallow paraboloidal shells of uniform thickness has been
treated earlier by E. Reissner [6] and it would be of interest to show the correspondence
of the two solutions. Using his own notation (except for a subscript R which, when
necessary, .will be added in order to distinguish the symbols from those of the present
paper), Reissner in [6] defines the middle surface of paraboloidal shells by

r = of, 2 = W«(f), /*({) = r, (5.19)
"where a is a reference length, is of order unity and nR a number small compared with
unity. • • • A shallow shell is defined by the stipulation that for it, terms of order nl
may be neglected compared with terms of order unity." With this stipulation, a = a,
A0 = — 3/(4£2), /x2 = m/h0 a n\xR , = £"~2, and (2.13) becomes (which, except for
a constant, is the solution given in [6])

yl/2 i J2/n(1?*) f

where

WR = f 2/nV' (5.20)

lY1/n(v*)\

£?]>■ (-20
Prior to establishing the relationship between the two solutions (5.17) and (5.20),

we note that if terms of 0(</>2) are neglected in the series expressions of r and z of this
paper, these quantities read:

r = ce4>,/<"~1), 2 = ^0n/(n-1). (5.22)
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Thus, the form (5.19) is equivalent to (5.22) of the present paper if

Mb = £ , (5.23)

£ = <p

It follows from (5.23) that rj* = jj, and hence
W = 2)/2Wk . (5.24)

It may be noted that though the two solutions W and WK differ, due to the particular
choice of the independent variable, they yield identical expressions for /S + i\p defined
in (5.9).

References
1. H. Reissner, Spannungen in Kugelschalen (Kuppeln), Festschrift Mueller—Breslau, 181-193 (1912)
2. E. Meissner, Das Elastizitatsproblem dunner Schalen von Ringflachen, Kugel- oder Kegelform,

Physikal. Z. 14, 343-349 (1913)
3. E. Meissner, Gber Elastizitat und Festigkeit dunner Schalen, Vierteljahrsschrift der Naturforsch.

Gesell. in Zurich 60, 23-27 (1915)
4. John-Erik Ekstrom, Studien uber dunne Schalen von rolationssymmetrischer Form und Belastung

mil konstcinter oder veranderlicher Wandstarke, Ingenior svetenskapsakademiens Handlingar Nr.
121, Stockholm, 1933

5. M. F. Spotts, Analysis of spherical shells of variable wall thickness, J. Appl. Mech. 6, 97-102 (1939);
See also S. Bergmann, Discussion of Reference (5), J. Appl. Mech. 7, 88-89 (1940)

6. E. Reissner, On the theory of thin elastic shells, H. Reissner Anniversary Volume, 231-247, 1949
7. P. M. Naghdi and C. N. DeSilva, On the deformation of elastic shells of revolution, Quart. Appl. Math.

12, 369-374 (1955)
8. R. E. Langer, On the asymptotic solution of ordinary differential equations, with reference to the Stokes'

phenomenon about a singular point, Trans. Am. Math. Soc. 37, 397-416 (1935)
9. P. M. Naghdi and C. N. DeSilva, Deformation of elastic ellipsoidal shells of revolution, Proc. 2nd

U. S. Natl. Congr. Appl. Mech. 333-343 (1955)
10. P. M. Naghdi, The effect of transverse shear deformation on the bending of elastic shells of revolution,

to appear in Quart. Appl. Math.
11. R. A. Clark, On the theory of thin elastic toroidal shells, J. Math. Phys. 29, 146-178 (1950)


