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HEAT TRANSFER AT RECTANGULAR CORNERS*
By J. C. WILSON (Research Laboratory, Redstone Arsenal, Huntsville, Alabama)

Introduction. In this paper, a solution to the heat equation, Au = u, , appropriate
to a small neighborhood of a rectangular corner is developed. It will be assumed through-
out that the initial condition is that of zero temperature. The boundary values will be
given by a continuous function of position. The equation is solved by means of “Green’s
function” and the solution expressed as an infinite series. This series is relatively simple
to evaluate and the error involved is readily calculated. Moreover, the solution may be
differentiated with respect to any one of the variables involved.

I. Let the rectangle be such that a vertex is at the origin of a (¢, 1) coordinate system
with its boundary consisting of the positive £ and » axes, together with two half lines at
infinity. The boundary function is defined as

k(1 — fz/azly 7 =0, 0<¢t<a,
¢(§: "7) = k[]- - ’12/02], £ = 0) 0< n < a, (1'1)

0, for all other points (¢, 1) on the boundary,
where a and k are positive, real numbers. From a physical viewpoint, the function ¢
may represent a good approximation to boundary functions resulting from various
modes of heating, at least for £ and » small. For example, suppose the source is a two-
dimensional flame of arbitrary outline, applied to the corner in such a way that its
temperature distribution is closely approximated by either T, = k [1 — (£ + 1°)/a® +
f(£n)], where f is a polynomial in &9, or T, = k [l — (£* 4+ 7°)/a® + (higher powers of
¢ and 9)], with T, and T, being positive or zero for all £ and 7. If the flame temperatures
are best approximated by T, , then for 0 < ¢ < a,0 < 4 < @, the boundary temperature
must be equally close to ¢. If T’ is best, then, for £ and 5 small enough, one has boundary
values again arbitrarily close to ¢.

II. A solution of Au = u, will now be obtained which is valid for z, y, and ¢ positive
and such that

(a) limu =0, for 2> 0, y > 0;

(b) u = g fort > 0and (z, y) on the boundary.
First a “Green’s function” is defined as follows:
Gz, y, ;& m, 1) = im(t — Diexp [—(¢ — 2)°/4(t — D] — exp [~ (¢ + 2)*/4(t — D]}
fexp [—(n — 9)’/4(t — D] — exp [-(n + 9)*/4t — D). 2]

As is well known, by employing Green’s formula, one arrives at the solution

‘u(x, y, ) = j: [L ez, y) %?ds] dr, (2.2)
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where the symbol [; denotes the integral taken over the boundary of the rectangle
and 9G/dn; signifies differentiation in the direction of the inner normal. After sub-
stitution, differentiation, and simplification, (2.2) becomes

ulz, y,t) = y/x fo elt, O)[exp {(—30[E — 2 + ¥’ I}/I¢ — 2* + ¥°]

~ exp (—3016 + 9 + ¢'1/16 + 2° + v Nk + 2/x [ 00, 7) 2.3)

- [exp {((=1)[(n — »)* + 2°1}/[(n — )’ + 2°]
— exp {(—1)[(n + v+ 132]}/[(77 + y)2 +2dy =1L -1, +1I, -1,

where a is the same as given in (1.1). In order to show that lim,, u = 0, consider the
integral I, . The integrand may be expanded in & series converging absolutely and
uniformly for all z, y, and ¢ bounded away from zero. Integration yields the new series,

> ufr oxp (—y/40-1/n 1/40" [ ot O — 97/ — & + 1de, @29

n=0

convergent under the same conditions. Now the nth partial sum of (2.4) has limit zero

when ¢ — 0. Thus, the limit function approaches zero with ¢ so that I, — 0 as ¢ — 0.

The same result holds for I, , I;, and I, . ,
To show that u takes on the prescribed boundary values, consider the expression

dl, = y/= exp {(—1)[¢ — 2° + ¥'I}/[¢ — 2)° + ']

Fora 5 ¢ lim, ,dI, = 0and forz = §,dl, = © asy —>O; Also, lim,_, [2,dI, dt = 1,
so that dI, has the “character of a &’ function. Using Schwarz’ distribution theory,
together with the fact that ¢(£, 0) can be extended to be C” for all £, the limit

lim [ o, 0) dI, df = ¢(x, 0).
-0 J-w
But for x > 0 and bounded away from zero,
lim [ o, 0) I, d = lim [ (t, 0) dI, ¢
© y—0 o

y—0 -

and this limit is uniformly taken in the sense of the Moore-Osgood theorem. Also, for
y>0,

lim f o(t, 0) dI, d

clearly exists for all ¥, > 6 > 0. Thercfore,

Ilm ‘P(E) 0) dIl dE = ¢(IO ) 0))
(y—'O ) 0
for all 2, bounded away from zero. It follows immediately that

lim [—-1,+ I, — I,] =0.

v—0 )
I
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Using identical arguments,

lim | ¢, n) dl, dy = (0,y;) forall y, > 8> 0.

G 7°
Again, the remaining double limits are zero. It remains to show that

lim » = (0, 0).

(3—00

For this purpose, it is sufficient to consider the sum
n-n+n-1;, (2.5

where I, is I, ,a = 1, --- , 4, with the exponential term set equal to 1. After suitable
transformations, one can write (2.5) as the sum

2/m{e(x + YA, 0) arc tan z/y + ¢(0, y + 2\’) arc tan y/x}
l (a—z)/v ¢(x + yo, 0) (a+z)/y ¢(x — yo, 0) }
A

L 1+o 1+
(a=y)/z (a+v)/z
+}r{fo vtz g [Ty ’”")d}=A+B+C,

where —z/y < A < 0and —y/z < N\’ < 0. Since ¢ is a continuous function of z and y
in any neighborhood of the origin, it is certainly possible to find a & > 0 such that for
z < 8, y < §, the following inequalities hold:

|A — 0,0 | <¢,|B|<e and |C]| <e for e>0.

The existence of the limit in question is therefore assured.

III. To obtain the series development of the solution, first the exponentials in each
integrand of (2.3) are expanded. The resulting expressions are series converging absolutely
and uniformly for r, y, and ¢ in any closed, bounded domain, minus the origin. After
substituting for ¢ as given by (1.1) and collecting similar terms, one may integrate,
obtaining the expression

= k/xd’{1 — (@® + ¥* — 2°) arc tan 2zy/(a® + y¥* — 2°)
— (@’ + 2" — o) arc tan 2zy/(a’ + 2° — ¢)
+ ay In (@* + ¢°)"/[0® — 2a*(x" — 62" + ) + (" + ¥))']} 3.1)
— ka’zy/16xt® + ka’zy/96xt’[a’/3 + =* + ¥°]
— ka’zy/3072xt'[a’/2 + 8a°/3(2* + ¥°) + 3(z" + ¥°)°]
+ ka’zy/30,720nt’(a/5 + 5a*/3(2" + ¥7) + 100*/3(z* + o)’ + 26" + ¥)’] — -

where the principal value is used in computing the arctan.

The series is alternating and converges absolutely for all x, y, and ¢ positive. For
applied purposes, one may have to restrict the values of ¢ to some definite range in order
that the solution give results in agreement with actual conditions. Appropriate ranges
for ¢ would, of course, be governed by the nature of the heat source and the material
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heated. In any case, it is clear that the most rapid convergence is obtained for small
z and y and comparatively large f. Although the first term appears formidable, it turns
out that in many instances the arctan and log terms are negligible. For example, if
k = 10°, a = 2, and 2y < 4/10° the arctan and log may be neglected if an error within
+1/10 is satisfactory. Since the series is alternating, the error involved is less, in absolute
value, than the first term not employed in the calculation. Thus, once k and a are fixed,
one might check terms, beginning with the third, i.e., ka’zy/96x# [a’/3 + 2* + 7], in
order to obtain a range for x, y, and ¢ so that a given error tolerance is not exceeded.
From the form of each term, an inequality involving the product, zy, is simplest to
handle and furnishes a good check for  and y small. As a usual occurrence the calculation
of three or four terms gives sufficient accuracy for applied purposes provided a reasonable
balance is maintained among the variables.

VISCO-ELASTIC STRESS ANALYSIS*
By J. R. M. RADOK (Brown University)

1. Introduction. In his paper on stress analysis in visco-elastic bodies [1]** E. H.
Lee bases his reasoning on the concept of an associated elastic problem to which a
visco-elastic problem reduces after removal of its time dependence by application of
the Laplace transform. Thus Lee’s method requires the application of the Laplace
transform to the boundary conditions as well as to the basic equations and it might be
expected that it is restricted to problems whose boundary conditions admit such an
operation. As a result, for example, the problem of indentation of a half-space by a
curved punch could not be solved by this method, since at any one point of the boundary
at different times stresses or displacements are specified.

It is the purpose of this paper to extend the applicability of Lee’s method to problems
of the above type and to show that the apparent restriction is due to the process by
which Lee deduced his method, in particular, due to the concept of the associated elastic
problem.

At the same time, the Laplace transform method will be restated in a different form
which may be called the method of functional equations. This method is completely
equivalent to Lee’s method, since both these methods coincide, if the functional equations
are solved by operational methods. However, the extension of the applicability of the
Laplace transform method to the wider range of problems requires the functional equa-
tion approach for its justification.

2. The method of functional equations. The basic, quasi-static equations governing
the linear theories of isotropic, elastic or visco-elastic media, referred to orthogonal,
rectilinear coordinates z, , may be written in the form

do; i
— X i = 0 : 2.1
o+ : 1)
r s 1 au" a’u ;
P’s;; = Q;; , R'o;; = S'e: €; = 5(;9?' + a_x:'),
*Received April 25, 1956. The results presented in this paper were obtained in the course of research
sponsored by the Office of Naval Research under Contract Nonr-562(10).
**Numbers in square brackets refer to the bibliography at the end of the paper.
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