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SOME ASPECTS OF THREE-DIMENSIONAL BOUNDARY LAYER FLOWS*
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Abstract. The equations for laminar boundary layer flow over a general smooth
surface in three dimensions are analyzed in a normal coordinate system. The invariance
properties of these equations are found using the concept of subtensors. The boundary
layer equations are not tensor equations but subtensor equations. Conditions for the
Cartesian form of the equations are given and a criterion for no secondary flow is found
in terms of the geodesies of the body surface. The displacement effect of the boundary
layer is also discussed.

Introduction. In recent times interest in three-dimensional boundary layer flows
has grown considerably. A review of the subject has been given by Sears [1], Most of
the work cited by Sears is concerned with the solutions to particular problems. To the
author's knowledge the only general discussions of boundary layers in three-dimensional
flows are contained in the work of Howarth [2], Moore [3], and Hayes [4], However,
there is also some work of C. C. Lin contained in Chap. 18 of [5], in which the appropriate
equations are derived without much discussion. This latter work had been overlooked
by the previously mentioned authors. The method presented by Lin proves to be useful
in discussing the invariance properties of the boundary layer equations. (C. C. Lin has
informed me that the material on general boundary layer equations [5] was supplied
to the late Professor A. D. Michal not as new results, but as a presentation of some
previous work by Levi-Civita.)

In this paper it is first shown that Lin's approach carries over to a more general class
of coordinate systems. Certain invariance properties follow from examining the resulting
equations. Now it is known that the two-dimensional boundary layer equations are not
tensor equations and one would expect the same result in three-dimensions (In [4],
Hayes seems to imply the contrary). However, in the language of [6], the boundary
layer equations are subtensor equations which means that they are invariant with
respect to certain types of coordinate transformations. This does not contradict the work
of Lagerstrom and Kaplun [7] and [8], where the non-tensor character of the boundary
layer equations is used to define an "optimum coordinate system". A similar procedure
could be developed for three-dimensional flows, however a more general coordinate
system than that used here would have to be considered.

From the subtensor form of the equations, it is easily shown that they reduce to
the "Cartesian form" (as is true for any two-dimensional flow) for any surface whose
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Gaussian curvature is zero if appropriate coordinates are used. Howarth [2], concludes
that this happens only for planes and cylinders. The curvature effects that Howarth
describes include the effects of a curvilinear coordinate system. (Moore [3] conjectured
that the Cartesian form applies to any curved surface.)

Using the streamline coordinates as in [4], it follows that a boundary layer flow is
essentially two-dimensional if there is no secondary flow. A simple criterion for no
secondary flow is given in terms of the geodesies of the surface. Finally the displacement
effect of the boundary layer is discussed. This is done in a different way than by Moore
[9], and some differences between the two- and three-dimensional cases are discussed.

Only laminar flows of an incompressible, non-conducting fluid are discussed. Some
of the conclusions should hold in more general cases, however. Also body forces have
been neglected and difficulties due to separation effects are not discussed.

The boundary layer equations. In applying the boundary layer concept to the
flow of a viscous fluid we have some given surface to consider, for example a solid body
or an interface between two fluids. This basic surface is used to define a coordinate
system: it is one of the coordinate surfaces. A convenient class of coordinate systems
is the normal coordinate systems, [6], which is defined as follows. A given one-parameter
family of surfaces in a Riemannian iV-space has a family of orthogonal trajectories
such that, under very general conditions, only one trajectory passes through each point
of space. The parameter of the family of surfaces is denoted by xN and on one of the
surfaces a coordinate system xl, • • ■ , xN~1 is set up. We shall be concerned with
a Euclidean 3-space although the derivation of the boundary layer equations would
proceed in the same way for more general spaces.

The convention is adopted that Greek suffixes have the range 1, 2 and small Latin
suffixes the range 1, 2, 3. The given surface over which we consider the boundary layer
flow is the one on which the coordinates x" are defined and for this surface x3 = 0.
Normal coordinate systems have the property that the distance expression is given by

ds2 = gaf dx" dx* + g33(dx3)2

that is,

g3a = 0.

There is no unique way of choosing our normal coordinate system since all that is re-
quired is that the given surface be one of the family. A simple special case is the geodesic
normal coordinate system in which the family of surfaces is obtained by measuring off
constant distances from a given surface along the geodesies which cut the surface ortho-
gonally. In this special case

033 " 1 •

This is the coordinate system used by Lin [5],
The surface x3 = 0 is, in general, a Riemannian 2-space. In this subspace we can

carry out tensor operations and these will be intimately related to the tensor operations
of the parent 3-space. We use a comma to denote covariant differentiation in the 3-space
and a semi-colon for the same operation in the subspace. A set of quantities Ta which
transform according to the law

T'a = T^x'/dx")
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under a transformation of the form

x" = /<">(/)
(1)

~'3x = x

is called a subtensor. If a tensor T, is split up into two groups Ta , T3 then for (1) Ta
is a subtensor and T3 is a subinvariant, and similarly for higher order tensors. Also
the Christoffel symbols, in which one or more of the indices have the value 3, are sub-
tensors. A more detailed discussion of substensors is given in [6],

The derivation of the boundary layer equations is straightforward but tedious. The
procedure here is essentially the same as Lin's for the special case of a geodesic normal
coordinate system and therefore will not be discussed in detail. (Some errors were found
in the details of [5] but these only affected terms which drop out in the boundary layer
approximation.) Starting from the Navier-Stokes equations in tensor form

(dUi/dt) + u'Ui.j = vg'kUi_ ,* — ^

u\, - 0,
where x is the ratio of pressure to the constant density, the following steps are necessary.
The momentum equations are split up into two groups (as illustrated above with TJ;
the covariant derivatives are expressed in terms of the "sub-covariant derivatives"; a
transformation

r = x3/vu\ U3 = ujvu\ (3)

is applied; all quantities, including the metric tensor and Christoffel symbols, are ex-
panded in a power series in p1/2; the equations for the lowest order terms then yield the
boundary layer equations

0dua/dt) + + (Us/giVXduJdft = -*.,* + (d2ua/d?)/giV
dw/df = 0 (4)

+ Cpi/ + (dU-i/d$)/g(3l' = 0,
where

Ca = (dglV/dx°)/2g™
giV = gUx1, X2, 0)

and the metric tensor for (4) is aa,p where

a«3 = gttti(z\ x2, 0).

The boundary layer equations (4) reduce to those given by Lin for g33 = 1. (Note that,
in the procedure outlined above, nothing is implied about the higher approximations
obtained from the series expansion. Consideration of these involves significant difficulties,
[13].)

Under transformations of the form (1) it is easily seen that equations (4) are invariant
since U3 and g33 are invariant. Thus the boundary layer equations have subtensor
character. This is not too surprising since what destroys the tensor character of this
approximation is the transformation (3) and this is not affected by (1). Also in the sub-
tensor form it becomes obvious that the boundary layer equations reduce to "Cartesian
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form" for any surface of zero curvature (flat 2-space) in which the coordinates x" are
Cartesian coordinates provided that a geodesic normal coordinate system is used, i.e.
<733 = 1. This conclusion differs from Howarth's [2], because he restricts his analysis
(which uses a geodesic normal system) to coordinate systems xa which can be Cartesian
only for planes and cylinders. Because of the subtensor character of (4) there is complete
freedom in the choice of x". However, the choice of Cartesian coordinates i"ona de-
velopable surface may not always be the most advantageous. For example, the form
of the terms which are determined by the external flow, may be complicated by
such a choice. It must be remembered that the conclusion concerning when the boundary
layer equations reduce to Cartesian form applies only to within the approximations
of the standard theory. For example, for the flow over on open-ended cylinder the
equations are in Cartesian form (for appropriate x") but the usual boundary layer
approximations become invalid as the distance from the leading edge increases. Finally,
it may be noted, even for flow over a plane the equations will have curvature terms
appearing if x" are not Cartesian coordinates.

The boundary layer equations (4) can be written in the more conventional form in
terms of the physical components of the velocity. Before doing this let us specialize to
orthogonal coordinates x" and change the notation for the metric tensor

g« = H),
a„ = hi , (no summation) (5)

ff33(a;\ x3, 0) = hi = <733',

where ha is not a function of x3. Also denote the physical components of the velocity
by u, v, and w. Thus

u — Ui/hi )

V ^ W%/h% ,

w = u3/h3 ,

since for (4) the metric tensor components are the lower case h's. In terms, of the physical
components, using x, y, and z as coordinates, Eqs. (4) become

u, + uux/hi + vuy/h2 + uvh,y/hji2 — v2h2x/hLh2 + wujh3 = — itx/h1 + vu,c/hl ,

vt + uvjht + wjh2 + uvh2x/hih2 — uhlu/hxh2 + wvjh3 = —Tt/h2 4* vv„fh\ , ^

7T2 = 0

[(h2h3u)x + {hlh3v)y]/hlh2 + w„/h3 = 0,

where the subscripts t, x, y, and z denote partial differentiation. These reduce to Howarth's
equations [2] for h3 = 1, i.e. a geodesic normal coordinate system. Hayes [4], gives these
equations (if compressibility is neglected in his equations) except that he, in some way,
allows h3 to depend on z.

Finally, it can be remarked that, to examine the flow in the neighborhood of a
stagnation point, as Howarth has done [10], it is only necessary to introduce a Riemannian
coordinate system for x" with origin at the stagnation point.

Secondary flow. Since the boundary layer equations are invariant under trans-
formations of the surface coordinates x", it is natural to look for coordinates which,
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under certain conditions, simplify the general equations. An ingenious choice of co-
ordinates was made by Hayes [4], For a steady external flow the coordinate x1 is chosen
along the streamlines of the external flow evaluated on the surface and x2 is along the
orthogonal trajectories of these streamlines. If U and V are the physical components
of the external flow, evaluated on the surface, in the x and y (or a;1 and x2) directions,
then for this choice of coordinates V = 0 and

TxAi TJTJx/h\ j (7)
—Ty/ht = — U2k,

where
k = hiy/hi}i2

i.e. k is the geodesic curvature of the streamlines. Consider steady flow in the boundary
layer. The boundary conditions for v are

v = 0, x —> a>

and, if the surface over which the flow is considered is a solid, non-spinning body,

d = 0, 2 = 0.

Now if k = 0, it is seen from (7) and the second equation of (6) that v = 0 is a solution.
The term "secondary flow" (also cross flow) is used to indicate that the streamlines in
the boundary layer flow do not coincide with the external flow streamlines evaluated
on the body. Also k = 0 has a simple geometric interpretation: the streamlines are
geodesies of the surface. Thus, for steady flow over a non-spinning body, there is no
secondary flow if the external flow streamlines are geodesies of the body surface.

A simple example of the above conclusion is provided by the flow over a flat plate
with an arbitrary leading edge placed in a uniform stream at no angle of attack; see
Fig. 1. The external flow streamlines are just straight lines on the plate so there is no

LEADING
EDGE

STREAMLINES

X

Fig. 1.
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secondary flow. (Moore [3], reaches this conclusion by finding a solution of the flow
equations. He also indicates how difficulties arise if the leading edge does not have a
continuously turning tangent.) A special case of this is the yawed flat plate. However
consider yawed infinite cylinders, which many authors have done, [1]. It is easy to see,
using the above criterion, that the yawed flat plate is the only case with no secondary
flow since for any other cylinder the external flow streamlines cannot be geodesies.

Since v = 0 in the streamline coordinates for k = 0, the boundary layer flow is
essentially two-dimensional. Equations (6), written for a geodesic normal system, become

mix/hi + wu, = UUx/hi -f- vu!Z ,

ir, = 0, (8)

(hn^jhjiz -f- w, = 0.

A new coordinate, X, can be introduced,

= f KJo
dx

and then Eqs. (8) are seen to be in exactly the form of the boundary layer equations
over a body of revolution. Therefore the same transformation that Mangier [11] has
introduced will reduce equations (8) to the standard two-dimensional equations.
Mangler's transformation is

-Xx
2hi dX,

V - fhZ, (9)

u = u',

w = h2w' — h2(tiu'.

Note that the coordinate transformation here is not of the type (1) and that the trans-
formation to new velocity components («', w') does not follow a tensor law. Hayes has
indicated the possibility of transforming the no-secondary flow equations to two-
dimensional form. However his transformation is made by choosing the form of the metric
tensor in a suitable manner and it would be very difficult to find out exactly what the
transformed coordinates are. From the discussion above it is seen that the transfor-
mation is just that of Mangier, except that y appears as a parameter.

Displacement surface. The displacement of the external flow streamlines by the
retarding action of the boundary layer is an important effect. In two-dimensional flow
the definition of displacement thickness, which is a measure of this effect, is straight-
forward and there are several equivalent definitions. In three-dimensional flow, if one
proceeds in strict analogy to the two-dimensional case, two displacement thicknesses
can be defined [9]. These are St and <52 , where

U8, = C{U - u) dx3,
Jo (10)

V s2 = f (V — v) dx3,
Jo
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in which (u, v) and (U, F) are the physical components of the velocity in the x1 and x2
directions in the boundary layer and the external flow respectively and h is "some
location well outside the boundary layer." (The coordinates x" are again general co-
ordinates, not the streamline coordinates of the previous section.) Moore refers to
these lengths as characterizing mass flow defects and then, using these, defines a dis-
placement surface as follows. In a geodesic normal coordinate system, the displacement
surface x3 = A(V, x) is an "impermeable surface which would deflect a nonviscous
fluid in such a way as to produce a normal velocity (IF) satisfying"

W = w(xx, x2) at x3 = h(xx, x2),

where h has the same meaning as above, and W is the external flow normal velocity.
After some approximations Moore gives a differential equation for A [9].

Here, using a slight modification of one of the two-dimensional definitions, an equa-
tion for A is obtained. This approach is quite different from Moore's but, making just
the boundary layer approximations, this equation reduces to that of Moore. Analysis
of the original equation shows an interesting difference between the three-and two-
dimensional cases.

In the following derivation geodesic normal coordinates are used and all vectors are
in physical components. It is convenient to use the suffix notation for the range 1, 2
but we set z = x3. First we dispose of some geometrical preliminaries. It can be shown
that (see [5], for example) the metric tensor components gafi are quadratic functions of z

g«t> = aa0 + 2 bafi + caBz2, (11)

where auij has already been defined and

bap = {dga$/dz) o/2,

c<xs = (d Qae/dz )o/2.

Also the following relation holds

caS = a"ba,bf,p . (12)

Specializing to orthogonal surface coordinates, by means of (12), Eqs. (11) can be written
as a perfect square. In the notation of (5)

Ha = h„ + laz, (13)

where

l» — baa/ha (no summation). (14)

If on a surface z = c = constant we draw a simply closed curve, the tangent vector, X,
and the normal vector, n, have the components

X: (Hi dxl/ds, H2 dx2/ds), q

n: ( H2 dx2/ds, Hx dx1/ds),

where s is the arc length along the curve.
To define a displacement surface we consider the flux of fluid through a developable

surface S formed by the normals to the surface 2 = 0, passing through a simply closed
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Fig. 2.

curved K0 on z = 0, see Fig. 2. This flux is computed for that part of S between 2 = 0
and z = h. For a velocity distribution Q this flux is given by

Fq — f Q ndS = [* (f (Q3H, dx1 - Q,H2 dx2) dz, (16)
J a Jo J k.

where Kc is the trace of the developable surface on the surface z = c and 0 < c < h.
The displacement surface

2 = A(xl, X2)

is a surface such that the flux through S, for 0 < z < h, is the same for the following two
velocity distributions

I. Qi = Q* = 0 for 0 < z < A

Ql = U

Q* = V
II. Qi - u

Qi = v.

for A < z < h

for 0 < z < h

From (16) we set

F, = F r

and this is the condition imposed to find A. Interchanging the order of integration and
making use of (13) and (14), after which the line integrals are calculated for K0 , this
requirement yields

Cf (GA dx2 - GA dx1) = 0, (17)
J K.

where

Gi = UA[l + (Z2A/2/i2)] + [\u- U)[l + (zl2/h2)] dz,
Jo (18)

G2 = FA[1 + (i,A/2A0] + f (v - F)[l + (zW] dz.
Jo
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The integral in (17) can be written as an integral over the area bounded by K0 using
the "surface divergence theorem" [12]. Since K0 is arbitrary we then obtain the result

div G = 0 (19)
for the vector G: (Gi , G2) where the operator div is the "surface divergence" [12], i.e.

div G = [d(h2Gj)/dxl + d(hlG2)/dx2]/h1h2

or in the subtensor notation (19) can be written

G% = 0.
For given velocity distributions I and II and a value of h, (19) is a differential equation
for A. However, in boundary layer theory, h cannot be given a definite value. In fact,
in accordance with the requirements of this theory, we must let h —* <». (Extrapolating
from the two-dimensional case, the integrals should converge since u —* U, v —> V
exponentially asx-» m.)

Thus far we have made no approximations. We take (U, V) to be the (physical)
velocity components, in the x1 and x2 directions, of the external flow evaluated on the
surface 3 = 0 and (u, v) the corresponding velocity components throughout the boundary
layer. Applying a transformation of the type (3) to z and A and keeping only the lowest
order terms in (18) gives the boundary layer approximation to G, and G2

Gl = t/A + f (u- U)dz = U{A - Si),
(20)

G2 = FA + f (v - V)dz= F(A - S2),
Jo

using the definitions (10). With these expressions (20) for the vector G, (19) is essentially
Moore's equation [9] for the displacement surface. Moore gives some examples of the
computation of A for special kinds of flow. Here we give a simple example by specializing
only the coordinate system. For the streamline coordinates of the previous section
V = 0, therefore (?2 = Jo vdz and (19) becomes

d[h2U{A - 5,)Vdx1 = -dih.G^/dx2 = Fix1, x2).

Thus

h2U(A - «i) = f F(x\ x2) dxl + f(x2),

where f(x2) is a constant of the integration with respect to xl and must be evaluated
from the conditions of the flow. Note that in the streamline coordinates the product
F<52 is well defined but S2 alone is undefined.

The method used above to obtain A is a modification of the corresponding two-
dimensional definition of displacement thickness. In two dimensions the developable
surface S is taken to be a plane perpendicular to the plane of flow and as a result no
differential equation need be solved for the displacement thickness. The A determined
from (19) using (20) differs from the S of (10) by a constant of integration which, in
most cases of interest, is zero. This is discussed by Moore [9].

However, it is interesting to compare the general expressions (18) for the vector G
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in the two- and three-dimensional cases. Let x2 = 0 be the plane of flow for a two-
dimensional flow. Then v = V = 0 and it is easy to show that l2 = 0. Thus the terms
that are neglected after making the boundary layer approximations to obtain (20)
disappear automatically for the special case of two-dimensional flow. This would be
important if one wanted to calculate approximations to a viscous flow beyond the
classical boundary layer theory as Kuo [13] has done for two-dimensional flow past a
flat plate. For two-dimensional flow the displacement thickness expression does not
change for the higher order approximations whereas for three-dimensional flow, including
axially symmetric flow, an expansion of the expressions (18) in powers of v'2 would be
necessary.
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