183

INTERMODULATION PRODUCTS FOR v-LAW BIASED WAVE RECTIFIER
FOR MULTIPLE FREQUENCY INPUT*

BY
E. FEUERSTEIN
Laboratory for Electronics, Inc., Boston, Mass.

Abstract. The intermodulation products obtained by passing the sum of N + 1
sinusoids of amplitudes P, , --- Py through a power rectifier of characteristic

0 V<B
o(V — B)’ V>B v>0

I =

have been expressed by S. O. Rice and W. R. Bennett in terms of contour integrals
involving products of Bessel functions. In this paper these integrals are rewritten as
improper integrals on the real line plus constant terms. These integrals converge fast
enough in many cases to be useful in numerical integration.

A number of sub-cases arise, for which formulas for the intermodulation products
are listed.

Introduction. The evaluation of the intermodulation products obtained by dis-
torting the time function

V() = ﬁ P, cos (.t + 7.) N

through a nonlinear device
I =af(V) ©)

has been considered by several authors in recent years [1-10].
The output can be described ast:

I0 = 3 - 5 Huoomns ey B
mam0 ma=0
08 my(Pot + vo) o8 my(pit + 71) - -+ cos my(pxt + vn),
where
6 =1,
€n, = 2, m,=1,2,3---.
A typical term of (3), expressed in terms of sum and difference frequencies, is

Amo"'mN cos [’mo(pot + ’Yo) + ml(lht + ’Yl) + - mN(pNt + ’YN)]-

It has been shown] that for a wide class of nonlinear functions the intermodulation
coefficients are obtainable as contour integrals

*Received April 25, 1956.
tReference (3], Eqs. (4.9-15).
{Reference [3], Eqs. (4.9-17).
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AW%N=¥LFWOﬁJJwa, @)
where
M=3m, O]
and
Fiw) = f_ 1(V) exp (—iuV) dV, (68)
1 . .
Im=gﬁmwmmmw. (6b)

For the biased v-power rectifier for which

1=3° V<B o
«V—-B’ V>B

v >0,
F(iw) = aT'(v + D@Eu)~ """ exp (—wuB) (8)

and the path of integration C is the real u axis from — o to + o with a downward
indentation at u = 0.
Thus for »-law rectifiers, (4) specializes to:

M N
Am%,=w@+n%f@wﬂmampmmrLuwmmh 9)
c r=0

In this paper the contour integral (9) is transformed into real converging integrals
with bounded integrands plus a constant. Since most of these integrals converge fairly
rapidly, numerical desk or machine computation of the coefficients becomes quite
practicable, especially when only moderate accuracy is required.

Notation. It should also be noted that the coefficients are functions of », m, ,
m, --- my and Py, P, --- Py, the bias B, and the scale factor «, all together 2N + 5
degrees of freedom. However, (9) is homogeneous, and can be written

() — v f_ « N—(p+1) s £ ud
Amyeemy = aPT( + 1) 1r (i exp —iu H I i (Pou/Py) du. (10)
c o

r=0

It is convenient to choose as P, the largest amplitude of the set of input amplitudes,
and to substitute

P, _ _ -
P—o = kr S 19 kO = 1) (11&)
B

o= h | (11b)

The integrand of (10) becomes a function of », the degree of the rectifier law; h, the
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normalized bias; k, --- kv the normalized input amplitudes; and m, --- my the order
of the harmonics; altogether 2N + 3 variables.
Equation (3) may be rewritten as

© © N
I(t) = aPl') Z ot Zo %Av(n'o)"-mu(h) by, - kN) H €n, COS mr(prt + ‘Yr)’ (12)

mo=0 mN= r=0
where the coefficients

aP’ AL} b Ky o ) = A s (13)

The coefficients on the left [with the variables (h, k, - -- kv) spelled out] correspond to
the notation of Sternberg, Kaufman, Shipman and Thurston, who have called the
‘coefficients “Bennett functions,” while the coefficients on the right are given in the
notation of Rice, provided that the amplitudes have been normalized. This paper will
use the notation of Sternberg, Kaufman, Shipman and Thurston, and concern itself
with the transformation of

M N '
AL by ey o+ ky) = T + 1) %f (w)~ " exp (—wuh) [] I (kou) du, (14)
[+

r=0

N
M= Z(:) m, , ke =1,

into real integrals. The reader is advised that for integer », especially of low order, the
coefficients (14) are available in terms of published tables [6, 8, 9] computed by numerical
evaluation of certain multiple integrals, and may be extended to other values of the
parameters by recurrence relations [2, 4, 5]. The utility of this paper rests partly on the
independent evaluation of coefficients without using multiple integration, partly on the
evaluation of coefficients for non-integer power laws for which the multiple integral
formulation does not apply directly, and partly on the function theoretical perspective
concerning Bennett functions, obtainable from the integral formulation.

Evaluation of the contour integral. The integral (14) is broken up into three ranges
of integration: over the negative real u axis, » < u < —3§; over the positive u axis,
6 < u < «;and a semicircular contour with radius 8 indented into the negative imagin-
ary half plane. By a change of variable from u to —u the negative u axis integral is
reflected onto the positive half axis. One obtains:

' N
AL By Ky oo ky) = %P(V + l)i"{ﬁs (tuw)~ """ exp (—1uh) IIO I . (ku) du

® N
+2cosZw+1) | u cosuh [[Jnhd) du  (152)
2 ’

r=0

© N
- 2sin1§r v+ f w Y sinuh [ I, (k) du}
é r=0
if
N

>.m, =M even

r=0
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or

N
Av(n'o)."-m.-v(h7 kl y "0 kN) = i I‘(V + l)i‘l—’{i f& (iu)—('ﬂ) exp (—1'uh) ].—I Jnr(kru) du
r=0
T ® us
+ 2 cos 2 v+ j; u " gin wh [] Ja,(kw) du (15b)
. r=0

© ’ N
+ 2sin g w+1 /5 uw” Y cosuh [ J, (k%) du}

r=0

if
%

S m =M odd

r=0

The semicircular contour integral in (15) is evaluated by a) replacing the integrand by
a power series in u, b) replacing u by its complex polar form

u = & exp (6) du = tu do (16)

and ¢) integrating term by term from § = 7 to § = 2.

The resulting series in ascending powers of § will contain negative powers of § (the
principal part) provided v > M; a series in ascending positive powers of 8, and, if » is
an integer, a term free of § (the zero power of §) equal to r™"a, , where

o= 3| L tow (iun [T sent] (an

a, can be recognized as the residue of the integrand of (14) and is obtained for com-
putational purposes most easily by identification with the »th coefficient of one of the
power series expansions

N ©
Fiw) = cosuh [] Jm(k) = D an'; if M+» odd (18a)
r=0 1=0
N ®
F.w) = —isinwh [] Jn(kw) = D an'; if M +v even. (18b)
r=0 =0

Since all powers of u have zero coefficients for

0LI<M in the case of (18a) and
0<1l< M+ 1 in the case of (18b),

the residue a, vanishesfor M > v + 1if M + vis odd and for M > v if M + » is even.

The real integrals of (15), containing & as the lower limit, can be transformed so as
to bring into evidence the principal part of the Laurent series in & contained in them.
If F(u) and its derivatives F'(u), F''(u), --- F® (u) are bounded and p is an integer
so that

p—1<v<p (19)
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then, by repeated application of integration by parts, one obtains the identity

b —FL@ du = — [F’(b) F’(b) o F(r—l)(b) ]
s oyt U b’ + vy — l)b"l + + W — 1) - (r — p+ l)bv-pﬂ
F(9) F'(5) o Fo(s) ]
+ [ 1'5, + V(V - 1)6'_1 + y(y —_— 1) “ee (V — p + 1)8v-p+l (20)

-(v—p+l)F(p)(u) du.

l b
+v(v—1)---(v—p+1)f,“

Substituting for F(u) F,(u) or Fy(u) (see 18), one sees that the first bracket of (20)
vanishes as b — «. Replacing each term of the second bracket by its power series ex-
pansion, one obtains a Laurent series in & for the second bracket collectively.

From (15a) and (15b) it is clear that for » integer u~“*"F(u) in (20) must be even
for which ™ "F(u) is an odd function. Hence, for all cases of interest in which »is an
integer, each term of the brackets of (20) will be an odd function and it will be free of
the zero power of 6. If » is not an integer, all powers of the Laurent series in § of the
second bracket of (20) are not integers; therefore a possible term constant in 8 is excluded.

Finally it can be shown that the integrals on the right hand side of (20) contain, as
far as terms of interest for substitution into (15) are concerned, § only as a power series
in positive terms of 8. Thus, as § becomes small, these real integrals converge to their
value with the lower limit equal to zero.

In the case of integer », » = p and the integral on the right of (20) becomes:

v_llj; w'F”(u) du.

From (18) w’F“ ™V (u) is an odd function; it follows that w™'F‘’(u) is an even function,
and its integrand becomes an odd function of the limits of integration. On the other
hand, since F "’ (u) exists for u = 0, its power series expansion involves only non-negative
odd terms, the lowest of which is u'. Hence, the power series expansion of u™'F ‘"’ (u)
contains only non-negative integral powers of u. Integrating term by term and intro-
ducing the lower limit one obtains only odd integer positive powers of é.

If » is non-integral, the integrals on the right side of (20) involve the lower limit
5 only in positive non-integral powers of 8. Since 0 < » —p + 1 < 1 and F®(u) is
expressible in a power series in non-negative powers of (u), a term-by-term integration
leads to positive powers of the lower limit only. We note in passing that, for the special
case of M = 0,

Lim | % 7"V cos uhJo(w)Jo(ks) - -+ Jolknu) du

§—0 ]
is an improper integral which for machine purposes may be transformed into a proper
form with bounded integrand by one further integration by parts.

Since the integrand of (14) is regular for all finite u, except at the origin, (14) must
be independent of the value of 8. This implies that the principal parts of the Laurent
series in 8 of the expressions in (15) cancel exactly. The contribution of the positive
powers of & in each expression of (15) can be made as small as desired by making & small.
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If (20) has been substituted into (15), the integrals on the right side of (20) go over into
integrals with lower limit of integration zero. '
The only possible contribution of the semicircular contour is the residue term appear-
ing for integer ».
The integrals (15) may be written: .

F(V + 1) ~u
vy — 1) - (v—p-i-l)

Av(u'o)."'mu(h) kl y ° " kN) =

T 2 1% o, d X
-{[cos ~(+ 1)] = Pl — I:cos uh [] J,..,(lc,u)] du
2 T f" du r=0 (21a)
_ ey ]
[sm v+ 1)] f 7u [sm uh L[J J . (e, 0)
+ p! i"a,} if M even,
) . = I‘(V +1 -1
A sl by s oo h) = s
-{[cos T+ l):l 2 (" w! L I:sm uh H J..,(k,u)]
2 T /; du =0 (21b) |
. E g ® p—v-1 d’
+ [smz(v+ l):IT'[0 U du[cosuh 'I_TOJ,,.,(Icu)]
+ p! i"'a,} if M odd
and for both (21a) and (21b)
0 » non-integer
a =94l (21¢)
o | exp — 1uh H J..,(k,u) v integer
r=0

as well as:

p—1<v<op,

N
M=3m,,

r=0
ko = 1, k' s 1.

Equation (21) is more complicated than necessary since all possible cases are accounted
for in two possible forms. Specializing further, one obtains simpler equations which are
listed in Table 1.

If

N
h > Z k, : At(u,o).---mw(h) k y 1T kN) =0 (223')

r=0
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If

N
h<— Z; ke: AR canhy ke k) = 2204M g, (22b)
and » integer where q, is given by (17) or (18).

The above results were obtained by observing that if v is an integer one may, without
contributing to the integral (14), close the contour over the negative imaginary halfplane
if h > XY k, ; and close the contour over the positive imaginary halfplane if h < —

¥ o k, . These forms express the output when the bias is either so large as to prevent
all output, or so negative as to be free of cut-off regions.

Concluding remarks. This paper has been concerned with the analytic formulation
in terms of integrals with infinite upper limit. A glance at the original integral (10)
should convince the reader that the integrals resulting from it must be bounded for all
portions of the path C except possibly in the neighborhood of the origin, and it has been
the burden of this paper to show that the contribution of the integral (10) over a portion
of the path near the origin is also bounded.

For numerical evaluation of the integrals in Table 1 one must either find closed
form solutions in terms of other transcendental functions for which tabulated results
exist, or resort to numerical integration. For the zero bias case with two frequencies one
can indeed identify integrals (21a, b) with Weber-Schafheitlin integrals [1, 11, 12] provided
that m, + m, > -+ 1. These integrals are expressible in hypergeometric series. For
other two-frequency coefficients and integer power laws, the evaluation of the inter-
modulation coefficients might best be performed in terms of the published Tables of
Bennett functions, and recursion relations listed in {4, 8]. (These relations and others
can, of course, also be obtained by application of the standard recursion formulas of
Bessel functions to the integrals in Table 1).

In all other cases the integrals (22) in Table 1 must be evaluated numerically after
truncation at an upper value of u. From the point of view of precision computation it
is imperative that the incomplete (truncated) integrals converge to their limit rapidly
as the truncation value is increased. Therefore, for large u, the power of u in the integrands
(22) should be as negative as possible.

For integrals (22¢ to 22h) the identity (20) can be applied in the form suggested in
note 4 of Table 1. The integrals (22) are split into two regions at = 1 and the slowly
converging integral in the region of large u is replaced, by virtue of (20), by an integral
with faster rate of convergence plus an expression in terms of the derivatives of the
integrand evaluated at w = 1. (See note 4 of Table 1). The problem of truncation still
remains. Dr. Sternberg has pointed out to the author that, for | z | > 1 and | z | > m,
the Bessel functions may be replaced by one of their asymptotic representations, (11,
13). The simplest representation becomes

Jn(@) = Grr)™"* cos l:x + (m — .5) 1-25] (23)

The above approximation can be applied to the estimation of the integrals (22)
beyond their truncation value. Using z, = k,u, one obtains integrals involving trigono-
metric functions and negative powers of u. If it happens that the negative power of u
is an integer, one can, by repeated integration by parts, obtain integrals with integrands
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™" sin u or u™' cos u. Thus estimation of error resulting from truncation at U amounts
to table look-up of S#(U) and C#(U). In general, an upper bound to the approximation
is found by neglecting the oscillating cosine term. Unfortunately this bound is too large
to be of much use in accurate computation. In general, the error in the truncation
estimate, which results from a substitution of the trigonometric functions for Bessel
functions, can also be estimated from consideration of the error in the first neglected
term of the semi-convergent series (23). It should also be noted that, for small k, , u
must be large to make k,u >> 1. The latter fact precludes the direct use of the asymptotic
approximation for the Bessel function in those cases where the input amplitudes P,
[Eq. (1)] differ greatly; however, in this case one may use the power series expansion of
the Bessel function for the intermediate region:

U<u<k£1-, A>1.

As for the numerical integration of (22) between fixed limits, the reader is referred to
books on numerical analysis for a discussion of methods and error bounds.
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