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THE RELATION BETWEEN THE FLOW OF NON-NEWTONIAN FLUIDS AND
TURBULENT NEWTONIAN FLUIDS*

By R. S. RIVLIN (Brown University)

It is well known [1]** that if a Newtonian fluid such as water flows through a tube
of circular cross-section under conditions for which the critical Reynolds number is
exceeded, the relation between pressure gradient and volume rate of flow is non-linear.
Further [2], the radial distribution of velocity (averaged over regions large compared
with the eddy dimensions) departs markedly from the parabolic distribution which
would be expected for a Newtonian fluid. These results suggest that some analogy may
exist between the turbulent Newtonian fluid and the laminar flow of a non-Newtonian
fluid. It is the object of this note to pursue this line of thought and to indicate some of
the phenomena which might, in accordance with it, be observed in turbulent fluids.

If we assume that in a fluid, which is isotropic in its state of rest, the stress com-
ponents in the rectangular Cartesian coordinate system x{ may be expressed as poly-
nomials in the gradients of velocity, acceleration, second acceleration, • • • , (n — l)th
acceleration, then the stress matrix T (= || ||) may be expressed as a matrix poly-
nomial in n kinematic matrices ki , A.2 , • • • , A„ , defined by [3, 4]

A: = || || =

and

Ar = || a;;' || =

dVj dl
dXj dXi

d-A,',- 1} . dA\j , . (r_i) dVi , . (r_D dv±
dt + ' dxt + •' dx, + " dXi

(r = 2, 3, ••• , n),
(1)

where v< is the velocity of the fluid. The coefficients in this matrix polynomial are poly-
nomial invariants, under orthogonal transformations, of A, , A2 , • • • , A„ . If Ar = 0
for r > 2, then T may be expressed as a matrix polynomial in the two matrices Aj and
A2 . It has been shown [5] that it may then be expressed in the form

T = —pi + a,A, + a2A2 + a-sA? + a4A2 + asCAjA-j + A2Aj)

+ a6(A?A2 + A2A?) + ar(A,A!; + A2A,) + a8(AiA2 + A^Af), (2)

where p is arbitrary if the velocity field is specified, I is the unit matrix and the a's are
polynomials in IrAf , trA\ , trA\ , trA\ , trA,A2 , trA\A2 , <rA,A2 , trA\A\ . In deriving this
result it is assumed that the fluid is incompressible.

It can be shown [6] that the assumption that the stress components at a point of the
fluid can be expressed as polynomials in the gradients of the velocity, acceleration, etc.
at that point is, under rather general conditions, equivalent to an assumption that the
stress in an element of the fluid at any instant of time depends on the velocity gradients
in the element at that instant of time and at previous instants.
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We shall now consider the results obtained on the basis of this theory for the flow
of a fluid along a straight pipe of non-circular cross-section. If we assume that each
particle of the fluid moves in a rectilinear path parallel to the length of the pipe (in the
Xs-direction say), so that

Vi = t>2 = 0 and v3 = v3(xu x2), (3)

then it is easily seen, from (1), that Ar = 0 (r > 2), so that Eq. (2) is applicable. We
now substitute the expressions (3) for the velocity components in (2) and then substitute
the resulting expressions for the stress components in the equations of motion with
zero body forces. The three equations so obtained may be regarded as differential equa-
tions for the determination of p and v3 , subject to the boundary condition that v3 = 0
on the wall of the pipe. It has been shown by Ericksen [7] that these equations are
generally incompatible unless the pipe is circular. (Exceptions occur for particular
forms of the expression (2) for the stress; for example, the form T = — pi + r/At with
■q constant, which represents the Newtonian fluid, provides such a case.) This incom-
patibility implies that for a non-Newtonian fluid to which Eq. (2) applies, no state of
rectilinear flow along a non-circular pipe is in general possible, unless body forces are
applied to the fluid. Green and Rivlin [8] have considered the particular case of a nearly
Newtonian fluid for which the stress is given by

T = -pi + + c(e + trA2)A2 , (4)

where jj and c are constants and e is small enough so that any departure from the flow
field predicted for the Newtonian fluid, obtained by taking e = 0 in (4), may be treated
as a first order perturbation. They have found, for the case of a pipe with elliptical
cross-section, a flow field in which secondary flows in the cross-sectional planes are
superimposed on the rectilinear flow. Further calculations with somewhat similar results
have been carried out by Langlois and Rivlin [9] using a more general form than (4)
for the constitutive equation of the nearly Newtonian fluid.

It has been reported [10] that when a Newtonian fluid flows down a straight pipe of
non-circular cross-section, under conditions for which the fluid has become fully turbu-
lent, the flow is no longer rectilinear, but a secondary flow exists in the cross-sectional
planes of a type similar to that calculated by Green and Rivlin and by Langlois and
Rivlin. This fact further suggests that the turbulent Newtonian liquid may, for certain
purposes, be regarded as a non-Newtonian fluid.

On the basis of the theory for the flow of non-Newtonian fluids described above,
we can derive the existence of other phenomena. If the fluid is in a state of flow with
uniform velocity gradient K, described by

t>i = Kx2 , v2 = v3 = 0, (5)

then, from (5), (1) and (2), Ar = 0 (r > 2) and the stress components ti: at each point
of the fluid are given by [11]

tn = — V + «3 K2,

tu = —p + K2[{2a2 + a3) + 4 (a4 + a6)K2 + 8asX4], ^

t12 = K[ai + 2a,K2 + 4 a,K\

t33 = P, t23 = t3i = 0.



214 NOTES [Vol. XV, No. 2

Unlike the situation that exists in a Newtonian fluid, the normal components of stress
are not equivalent to a hydrostatic pressure. This results [11] in a number of phenomena
which have been observed in non-Newtonian fluids and may be called normal stress
effects.

For example, it was remarked by Garner and Nissan [12] that, for certain fluids, if
a cylindrical rod is rotated in the fluid, the fluid rises up the rod. For a Newtonian
fluid, the fluid surface would remain horizontal under conditions for which the centrifugal
forces are negligible and be depressed slightly at the stirrer if centrifugal forces were not
negligible. The rise at the stirrer which occurs with the non-Newtonian fluids implies
that a radial distribution of normal surface thrusts would have to be exerted on the
free surface of the non-Newtonian fluid in order to.maintain in it a velocity field in
which each particle moves with uniform velocity in a horizontal circular path about
the axis of rotation.

Again, Weissenberg [13] contained certain non-Newtonian fluids between two coaxial
cylindrical containers, the clearance between the bases of which was small compared
Math their diameters. The outer cylinder was rotated at a constant angular velocity,
while the inner one, to which were attached a number of vertical tubes communicating
with the fluid through small holes, was held stationary. He found that the fluid rose in
the tubes to an extent depending on their distance from the axis of rotation, the rise
being greatest at the axis and decreasing with increasing radial distance. In the region
between the discs, each particle of the fluid moves substantially in a horizontal circular
path about the axis of rotation with a uniform velocity depending on the radial and
vertical positions of the particle. The rise of fluid in the tubes implies that, in order to
maintain this state of flow in the non-Newtonian fluids, surface tractions must be exerted
on the plane surfaces of the fluid mass directed normally into the fluid. For a Newtonian
fluid, of course, only shearing tractions are required in order to maintain a similar flow*.

It can be shown that the terms in the expressions for the stress components, which
give rise to the secondary flow in the problem of the flow of a non-Newtonian fluid
down a non-circular pipe mentioned above, also give rise to normal stress effects of the
types observed by Garner and Nissan and by Weissenberg and this raises the possibility
that similar normal stress effects may also be observed in turbulent Newtonian fluids
in analogous situations.

It has been noted that the fluids in which normal stress effects have been observed
are visco-elastic and this suggests that turbulent Newtonian fluids may similarly show
some elastic effects under suitable experimental conditions. It may be remarked that in
high-polymer solutions, which exhibit both normal stress and visco-elastic effects, the
origin of the phenomena probably lies in the preferential orientation and extension of
the dissolved high-polymer molecules when the liquid is sheared. The eddies in a turbulent
Newtonian fluid will presumably undergo preferential orientation when the turbulent
fluid is sheared providing a possible mechanism for the effects in the turbulent fluid.
Also, the eddies in the sheared volume elements of the turbulent fluid would presumably

"This is not strictly correct if the effect of centrifugal forces is taken into account, but centrifugal
forces would cause the fluid to rise in the vertical tubes increasingly with increasing radial distance
from the axis of rotation. Furthermore, the effect observed with non-Newtonian fluids may be quite
pronounced under conditions of negligible centrifugal force.
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be distributed in an anisotropic manner and this would also provide a possible mechanism
for the effects discussed.

It will, of course, be appreciated that the above remarks are of a qualitative nature
and are presented as tentative suggestions rather than as positive predictions. Certainly
it appears quite likely that a phenomenological theory of the type considered, in which
the stress in an element of the turbulent fluid (large compared with the eddy dimensions)
is supposed to depend only on the kinematic variables in that element or on the velocity-
gradient history of that element, will be entirely adequate as a complete description of
the flow properties of the turbulent fluid, since eddies can diffuse from one point of the
fluid to another.
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