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Integrating Eq. (13) between —1 and +1 gives another relation between the c<

c0(l — In 2)IiQc) — cJoik) = 0

so that, solving for c0 and c, ,

  h(k) (1 - In 2)1, (k)
C° (In 2)I0(k) + kh(k) ' Cl (In 2)/„(*) + kh(k)

and the final solution may now be written down by substituting for h(x) and the c< in
Eq. (13). The special case of small k is of interest; to the first order,

/(x) = 7r in 2d1- xyn + k{1 ~ nh) x(i -Xy/S •

where the first term is the well-known solution of Eq. (12) for k = 0. The correction term
bears a ratio to the first term of approximately (|fcx), which is of the expected magnitude.

To conclude, it may be remarked that to write out a formal solution is estimated to
require about 2n3/2 hours of labor for that case in which P and Q are nth order poly-
nomials. Of course, once such a solution has been tabulated, it may be used for a number
of kernels or parameters. Note also, as previously mentioned, the possibility of curve-
fitting. In particular, if a large number of terms are to be used, it may be worthwhile
to set P = 1 and represent the kernel behavior by [In \ x — t\ +Q] alone; the Q terms
could then of course be absorbed directly into g(x) and Eq. (3) used.
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PRIORITY ASSIGNMENT ON A WAITING LINE*
By S. A. DRESSIN1 and E. REICH1 (Santa Monica, California)

Interest in queueing statistics when a priority system is involved is now widespread,
especially in connection with communications applications. In this paper we consider
a model described in the usual customer-counter terminology as follows.

Input. There are r classes of customers, a particular class, labelled by the integer p,
(p — 1,2, ... , r), being made up of customers of "priority" p. (Following an unfortunate,
but standard, practice, priority pi will be said to be higher than priority p2 if and only
if p, < p2 .) Customers of priority p arrive as a Poisson process with interarrival-period
distribution \ve~XpXdx , x > 0. Customers of different priorities arrive independently.

Queue-discipline. Once a customer's service has begun, it is permitted to proceed to
completion. If the counter becomes empty, and there is at least one customer waiting,
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then a customer of the highest priority present on queue is admitted to the counter, and
his service starts. Customers of equal priority are served first come, first served.

Service mechanism. The service period has the distribution ne'^dx, x > 0. Service
periods are mutually independent, and independent of input history and priority.

The above model will be recognized to be a specialization of one considered by
Cobham [1], It is reasonable in some applications, and has the mathematical virtue of
yielding simpler results than more general queue disciplines. This paper extends previous
work in that we compute conditional and unconditional distributions, rather than only
means.

In what follows, we put

= Z X., aT = a.

The system will be said to be in state n if the total number of customers at the counter
and on queue is n(n = 0, 1, 2, • • •). At the same time, the system will be said to be in
state (n; p), n = 1, 2, • • ■ , if there is a customer of arbitrary priority at the counter,
and there are exactly n — 1 customers, of priority p or higher, on queue. State (0; p)
will be identified with state 0.

System behavior with time. It is clear that the value of n at time t is the same as
if we were dealing with the classical case r = 1. The reason for this is that the particular
queue discipline under consideration can be transformed to first come, first served, by
merely reordering those customers on queue, in a manner not depending on their service
times. If we continue this reasoning, applying it to the class of cutomers of priority
■p or higher, we see that the following is true: For every fixed p, the vector A = [fc, (m; p)]
is a Markoffin function of time.

Let Pn{t) = probability that the system is in state n at time t, P(„;p) (t) = probability
that the system is in state (n; p) at time t. In view of what was said above, the differential
equations for Pn(t) are the well-known ones [4],

d,P0(t) = — <rPo(0 + nPi(t), (1)

d,Pn(0 = uP- {ff + n)Pn(t) + nPn+l(t), n = 1, 2, • • • . (2)

Trivially,
P»,,M = Po(f). (3)

Let h > 0 be a small quantity. Neglecting probabilities of order h2, we can say that
the system is in state (1; p) at time t = t„ if and only if at least one of the following
mutually exclusive events has occurred.

(i) State at t = t0 — h was (1; p), no service ended since t0 — h, no customers of
priority p or higher arrived since t0 — h, or

(ii) the value of A at time t0 — h was [k, (1; p)}, k > 1, a service period ended since
t0 — h, no customers of priority p or higher arrived since t0 — h, or

(iii) state at t0 — h was (0; p), a customer of arbitrary priority arrived since t0 — h, or
(iv) state at ta — h was (2; p), a service period ended since t0 — h, no customers of

priority p or higher arrived since t0 — h. Now, within terms of order h2,

Prob (i) = (1 — fih — cvK)P^.,v)(t0 - h),

Prob (ii) = nh[P(l.,p)(t — h) — P,(t - h)],
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Prob (iii) = <rhP0(t — h),

Prob (iv) = nhP(2-,p)(t — h).

Hence

dlf\l;p)(0 = O"PO(0 — /iP i(t) — crpP(1;p)(<) + |iP( J ;,)(<)• (4)

Similarly,

dtP(»;p)(0 = — (fj. + /l)-f>{»;p)(0 + l*P(n+1-.vAt) > 71 = 2, 3, * * * . (5)

Note that Eqs. (3)-(5) involve P0(<), Pi(0> as determined by Eqs. (1), (2). If <r < n
then the "equilibrium" solutions Pk , P(h-.V), of (l)-(5), for which

lPt= 1= ±P«.Irt,
fc-0 i = 0

p-- '-o.1.2.---. («)
are

and, therefore

7P \H ) '
 £, P<>„) = (M , (t2) , t-1,2, .... (7)

If o- > m > <r„ , the appropriate values are

Pk — 0, (*- 0,1,2,-..),

P{0;p) = 0, P(i;„ = (fc = 1, 2, • • •).

Conditional queueing times. We now calculate the probability f(n.p)(T)d,T that a
customer C of priority p will have to wait on queue for a duration of between T and
T + dT, conditional to the assumption that the system is in state (n; p) the instant
before C's arrival. It is clear that the probability in question would not be altered if it
were further conditioned relative to some aspect of the queue's history prior to C's
arrival.

Of course
f{0-.r)(.T) = &(T — 0), p = 1, 2, • • • , r. (8)

Also,

f(n-,u(T) = n fold convolution of = n"T"~le~l'T/(n — 1)!, ^

T > 0, n = 1, 2, ." .

By employing a simple device we can immediately write down /u;P)(T), p > 1.
If a customer C of priority p finds, on arrival, that the only customer delaying him is a
customer at the counter, then C's queueing time T depends on the additional service
time of the customer at the counter, plus the service times of the customers of priority
higher than p who arrive while the customer at the counter is served, etc. T evidently
has the same distribution as the length of the busy period of the classical single-priority
queue with input and service parameters trp_, and n, respectively, that is, [3, 4], if
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< ix, fa-,v)(T) = W^-^T-1 exp [—+ n)T)IMWT),
T> 0, p = 2, 3, • • • ,

where /„ is the modified Bessel function of order n. If the system is in state (n; p) n > 1,
p > 1, the instant before C's arrival, say at t = 0, then T is unaffected if we reduce the
priorities of those customers of priority higher than p, who are on queue at t = 0, to p.
Assume this reduction is carried out. Let C* denote that customer of priority p who is
directly in front of C, and let T* denote the remaining queueing time of C*, from t = 0
on. T* has the distribution f („-,[v)(x)dx. At t = T*, C*'s service starts, and C is first
on line in front of the counter. Hence the variable T — T* has distribution f(1.v)(x)dx,
and is independent of T*. Consequently, /(„;j))(x) is the convolution of /(„-i;„>(x) and
fiUv)(x); that is,

= n fold convolution of fa-.AT)

= nGx/<rp_1)n/25T1 exp + rfTVM'WT), (10)

T > 0, n - 1,2, ••• , p = 2,3, ••• . 3

Unconditional queueing times. Suppose test-customer of priority p enters the
system at time t. The probability that he will have to wait on queue for a period between
T and T + dT is

FV{T; t) dT = £ P«;At)f«-.AT) dT.
k — 0

In "equilibirum", we have, by (7)-(10), if <j < n,

E[e-T\ = 1 - (,/M) + 2(<r/M)G» - (11)

where

Q = S + <yv-\ + M - 2crp + (S + av-\ + M + 2*VWy'\s + + M - W-WY*,
<Tq = 0.

An analogous expression is obtained when <j > m > <r„ .
Note that Eq. (11) gives, for p — 1,

Prob \T < x] = 1 - (a/n)e~^"~XlU, x > 0.
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3This result can also be obtained by using Eq. (4.14) of [6J.


