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THE EFFECT OF TRANSVERSE SHEAR DEFORMATION ON THE
BENDING OF ELASTIC SHELLS OF REVOLUTION*

BT

P. M. NAGHDI
University of Michigan

1. Introduction. The classical theory of thin elastic shells of revolution with small
axisymmetric displacements, due to H. Reissner [1] for spherical shells of uniform thick-
ness, and Meissner [2, 3] for the general shells of revolution, was recently reconsidered
by E. Reissner [4], where reference to the historical development of the subject may be
found. Although the formulation of the linear theory and the resulting differential
equations contained in [4] differ only slightly from those of H. Reissner and Meissner,
they offer certain advantages not revealed in earlier formulations.

As has been recently pointed out, the improvement of the linear theory of thin
shells, by inclusion of the effects of both transverse shear deformation and normal stress,
requires the formulation of suitable stress strain relations and appropriate boundary
conditions which, for shells of uniform thickness, have been very recently carried out
by E. Reissner [5] and the present author [6]**. The latter also contains explicit stress
strain relations when only the effect of transverse shear deformation is fully accounted
for but that of normal stress is neglected.

The present paper is concerned with the small axisymmetric deformation of elastic
shells of revolution, where only the effect of transverse shear deformation is retained.
The basic equations which include the appropriate expression for the transverse (shear)
stress resultant due to the variation in thickness, are reduced to two simultaneous
second-order differential equations in two suitable dependent variables. These equations
are then combined into a single complex differential equation which is valid for shells
of uniform thickness, as well as for a large class of variable thickness. Finally, by an
extension of the method of asymptotic integration due to Langer [8], the general solution
of the complex differential equation is discussed.

2. The basic equations in surface-of-revolution coordinates. The parametric equa-
tions of the middle surface of the shell may be written as

r = rft), z = z(£), (2.1)
where £, together with the polar angle 6 in the x, y-plane constitute the coordinates of
the middle surface. Denoting by </> the inclination of the tangent to the meridian of the
shell, then

tan <f> = ^ (2.2)

and
r' — a cos <f>, z' = a sin <j>, (2.3)

♦Received January 20, 1956. The results presented in this paper were obtained in the course of
research sponsored by the Office of Naval Research under Contract Nonr-1224(01), Project NR-064-408,
with the University of Michigan.

**The stress strain relations derived in both [5] and [6] were obtained by application of E. Reissner's
variational theorem [7], References to earlier work on the subject appear in [5] and [6].
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where
« = \{r'Y + (z')2r (2.4)

and prime denotes differentiation with respect to £.
The square of the linear element for the triply orthogonal curvilinear coordinate

system £, 0, and f (measured along the outward normal to the middle surface) is

ds2 = a(l + d£ + r2^l + dd2 + df2, (2.5)

where

• *' = "Si (2"6)

are the principal radii of the curvature of the middle surface.
For axisymmetric deformation of shells of revolution, the displacements in the

tangential and normal directions may be taken in the form:

u( = u(k) + m), w. = w@, (2.7)
where u and w denote the components of displacements at the middle surface, and 0
is'the change of the slope of the normal to the middle surface of the shell. As pointed
out in both [5] and [6], the approximation (2.7) for the displacements is consistent with
the neglect of the effect of transverse normal stress in the stress strain relations for a
thin shell. It is convenient to express the displacements u and w in terms of the corre-
sponding components ur and w, (on the middle surface f = 0) along the radial and
axial directions, respectively. Thus,

ur = u cos 4> — w sin 0, w, = u sin <t> + w cos <f> (2.8a)

or alternatively,

u = ur cos <^> + w, sin 0, w = w, cos <f> — ur sin <£. (2.8b)

The components of strain, as given in [5, 6], with the aid of (2.8) may be written in
the form

o u'r + z'w 0 Ur
et _ J > 69 r

o , cos <j> , sin <t> ,' n
7tf = W.    - Wr b /3a a

(2.9a)

= - , ks = - ^ (2.9b)a r a

and the relevant compatibility equation, obtained from (2.9a) by elimination of u, is

(r'4) = (re?)' + z'w, (2.10a)

where
CO = 7°{r - 0. (2.10b)

It may be noted that, upon the neglect of terms involving y°(t (which represent the
effect of transverse shear deformation), (2.9) and (2.10) reduce to the corresponding
expressions of the classical fheor\\
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The stress differential equations of equilibrium, given in [4], may be written as

(rPy)' = -raqv ,

(rPH)' - aNe + raqH = 0, (2.11)

(:rM()' — a cos <j>M, — ra(PF cos <t> — P„ sin <f>) = 0,

where PH and Pv are "horizontal" and "vertical" stress resultants, respectively; qH
and qv are the components of the applied load in the horizontal and vertical directions;
M( and Me denote the stress couples; and the stress resultants N( and Ne , as well as the
transverse stress resultant V (due to r£f), are related to PH and Pv by

aN( = r'PH + z'Py ,

aV = -z'PH + r'Py , (2.12)

aNe = (rPH)' + raq„ .

We recall that the stress strain relations (as well as the stress differential equations
of equilibrium) which are employed in the classical theory of shells (and plates) of
variable thickness, are those for shells of uniform thickness, although the resulting
differential equations take into account the effect of thickness variation. As the present
analysis is concerned mainly with the effect of transverse shear deformation, it becomes
necessary to modify slightly the available stress strain relations of uniform shells [5, 6]
by incorporating the effect of thickness variation into the expression for the transverse
shear stress r{f . To this end, we replace in Eqs. (2.9) of Ref. [6] the expression corres-
ponding to T{f by

3Gfe)j
+

which, together with <rf , satisfies the stress boundary conditions on f = ± h/2, where
the direction cosines of the outward normal to the middle surface are { —h'/2a, 0, 1} /
[1 + (h'/2a)2]1. While expression (2.13) will not change the differential equations of
equilibrium (2.11), it does contribute to the stress strain relations, as may be seen from
the variational equation employed in [5, 6]. However, in view of the neglect of the trans-
verse normal stress, together with neglect of second-order corrections in h/R in comparison
with first-order corrections, the resulting stress strain relations for a uniform shell (in
the form of (3.6) of Ref. [6]), except for a modification in the transverse shear stress
strain relation, remain unaltered.

We close this section by recording the stress strain relations in a manner suitable
for subsequent analysis. Thus,

e? = £ (N( - vNe) + fcx[j (V + , /?)],

«! = £ (Ne - vN() - fc\[i (£p + W3')], (2.14a)
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» _ JL_
7{r 5 Gh

where

m, = c[(r + -£*)- «x('-!i4^)],

.(7" + '"•) + «x(7)]'
(2.14b)

aMe ' D

C = <? = ^7t4-3 . D = 7wT~~?\ ,2(1 + f) ' 12(1 - /)
J? and v are Young's modulus and Poisson's ratio, respectively, and

* " W&7) ■ 4 <2-15>
3. Differential equations of shells of revolution. With /S and (rPH) as basic dependent

variables, proper elimination between Eqs. (2.12), (2.14), (2.11), and (2.10) leads to the
following two second-order differential equations:

- {(1" ^[(7)* -' ] + "*X(2X' + r X)(7)V

I V "Ia)' Ml.-
+ ,_n,a) -\r )](rP*)

(irD/a)

|"(X/C)' (rP/<
L (X/C) + (rZ)/.

, f (X/C)' {rD/a)' Ml.rv+ L" Wo +" M + w J( Pw)
(rPv) + (^){[(2'P,)' - v{raqH)'}

(3.1)

Crp y/ 4. 0"/°^) (rp y  
{rP"> + (r/aC) (rP"}

(r/cti

+

(X/C)' (rD/a)' /r'\l+ Lwcy + t^" v;J(z/v)
r (x/cr , (r/>/«)' _ mi, „ a
L (X/C) + " (rD/a) \r/J( 9h)J'

b'- &>{&■+[€)+'©■+w>
;c:)(7)'+(;),e-)+'©c-)+(r«)if>} «•*

~ [tS + v}™5"' ~ ' " frtn''"' •
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where k and X are given by (2.15), and (rPv) = —Jr aqr d£. With ft and (rPH) known,
the radial and axial displacements may be determined from the second of (2.14a) and
the equation

w, = f (z'e] + r'u) df (3.3)

which, with the aid of (2.3), is deduced from (2.9a).
When the effect of transverse shear deformation is neglected (by setting X = = 0),

(3.1) and (3.2) reduce to the corresponding equations of the classical theory given by
E. Reissner [4], and which were first derived in a slightly different form by H. Reissner
[1] and Meissner [2, 3].

Introduction of the function 4' defined by

+ = m{rPit)' m = [12(1 ~ "2)]I/2- (3-4)

into (3.1) and (3.2) and some rearrangement of terms results in*

0" + [<> - kxim + 3f)- m*(r + »)]"'

i r^v ■ r'(* i
v _\r / r \X (r/a) /

= F i ,
r (r '

i" +

+ [S(r)(1 -
= F2i

(3.5)

_ f fVV (r'/a)' 12(1 + ,) /V\2 _ hr _ w ((r/ay v A
L v" / + " (r/a) + 5 \r ) 1 h 1 h V(r/«) + 2 r)

- ''"4" + [r + ̂  ! r +2 r+«,S o - (3-6)
, 1 r/r'V , r' /X' , (r/a)'\ (r'Y r'h'
+ 7 Lw +r{\+ V/af) + V/ + 2 7T

*In Eqs. (3.5) and (3.6), as well as in the subsequent analysis, the effect of thickness variation due
to shear stress strain relation is placed in double-squared brackets, i.e., [[ ]].
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where h0 is the value of the thickness h at some reference section (say £ = f0); F\ denotes
the right-hand side of (3.1); and F2 and T are given by

p - m
** ~ Eh2 (3.7a)

jTrW 12(1 + i>)\ (z'/aC)' rra ,.i/2>t1,X p n\I_~M1—5—) + vi^cy + llR,1 X7^|rP")

+ (rPy)' - [,£ + - „p1/2XT]]](r«g„)j- (»«„)'},

- - -KM W
Since h/R « 1, then

i 2\

(3.8b)

hence, in what follows, terms of the order 0(k\ ) will be neglected in comparison with
unity. With

X, = /? + vkUi\f, X2 = i - vkUi\fi, (3.8a)

from which
0 = (X, - vku\X2) + 0(fcX2),

t = (X2 + vfc,/2XX,) + 0(fcX2),

and with the aid of the relations

(fc1/2X)' X' h'
(fcl/2X) X + h '

(fc1/2X)" X" , „X7i' , fc"
(k1/2\) X + X/i + A '

(3.5) and (3.6) may be written as

(3.9)

L(X0 + /«3/(^)[l + + G,)(m? f2) ']*,

rl/2>/2r' X' /l'\ y, p
xl;r- + jr-rjX2 = F"

L(Xa) - (7 - k)X2

- Ma/(^)[i + (^,/2x(ffj + go - tf t]])(m2/ x2)"1]^.

-["l'"x(;r--r-3f:) + HX!-F"

(3.10)

(3.11)

where

«>-<>"+[|^+30 >'
r/r'Y (r'/<.]' , AA r'A'l" Lw ~' w ~ ■* ArJ -3" rt"J< >■
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1 + V /VV _ (r'/a)' _ 1 /VV _ 1 /V\ (r/a)' _ X^ _ V ["(r/a)' 1 r^"|
v \r / " (r/a) v\r / v\r) (r/a) X X Lfr/a) i> r J'

>'V , 1 /r'V l (r'/a)' 12(1 + ,) /VV 1 (r'\ (r/a)'
g> ~ 2W + 7 \r~,/ + * (r/a) + 5 W + ; W (^)~

_ KL _ hL f (r/a)' - I -1
X X L(r/a) vr J'

(3.12)

a 771

" >© = -ra,
and it is to be noted that in the last of (3.12), /u is a constant and /(£) is independent
of thickness h(£).

Multiplying (3.11) by i8 (where 5 is a function of £), adding the resulting equation
to (3.10), and observing that

X[ = (.X, + iSX2)' - idXl - iS'X* , i = (-l)1/a, (3.13)

will result in a fairly intricate complex differential equation. By taking 8 in the form

«[i + (vkW2\(9i + eg - [f~ r]])(M2/ ']

+ j[i + vkl/2\(gi + <?,)(m7 jf) ] (3-14)

■[l + (pkWi\(g2 + G2) - [f T]])(m2/ jf) ']

-[i,-4^nr
with the restriction that

V = 5" = 0, (3.15)

the complex differential equation mentioned may be reduced to
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L(x, + isx2) + + 2r) ~ + W

- *V/(^)[l + (^,/2X(flf■, + <?,) - [f T]])(m2/ I9) l](Xt + i5X2)
(3.16)

— -(- iSF2

+ W^(l + 52) + ^ (1 - S2) - £ (1 + 3S2)) + [[52T]]]^ .

The coefficient of (Xa + iSX2)' in the above equation (say B) is

B - m + 3 r + -2 r +2 Sr) - [[T11] <3-17>
and since

0 = exp || J B d^j = ^ h3'2 exp || iS(vk1/2\)

W M;?-£)+»*
(3.18)

then, by means of the transformation

Y = 0(X1 + iSX2) (3.19)

we finally obtain

Y" + [»W(f) + A©]F - e<t-X'2 = 6(Fj + i8F2) (3.20)
which, in view of the presence of the function X2 on the left-hand side, may be called
the "quasi-normal" form of (3.13). In (3.20), the functions $, ^2, and A are given by

m = (vfc,/aX)[^(l + 52) + ^ (1 - 52) - £ (1 + 3 52)] + [[«2T]] (3.21)

and

*2(|) = {s 1 + [vk1/2\(g2 + G2) - [£ T]])(m2/ J2) ']

. /t\ _ J A2 _ 1 (r/aT , 1 r (r/«)'T _ 6(1 + ») (A*
A[6) ~ \r J 2 (r/a) 4 L (r/«) J 5 W

_ 3 _ 3 /^\2 _ 3 (r/«y V _ rW
2 h 4 \/t / 2 (r/a) h v rh

, 1/2./1 /r'V , 1 M fr/a)' 1 X" X' /l r' 1 (r/a)'\
+ »&* xi-l-J +T(r)?^7ir-o — + rw"2(r7Sj/

(3.22)

(3.23)

5
2 h

[i> \r / v \r ) (r/a) 2 X

, K \irl _ s frA*)' _ ? ̂  _ !•> ̂11
+ h Lvr 2 (r/a) 2 X 2 h J/*
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4. Approximation of 8. Since 8, as given by (3.14) is fairly complicated, we impose
a further restriction on the order of magnitude of (n2)~l, i.e.,

(m2)-1 = 0(fc,/2X). (4.1)

Thus, by (4.1), i^'X/i-2 = 0(/cX2) which, as in the previous section, may be neglected
in comparison with unity. With this approximation, (3.14) simplifies considerably and
reads as follows:

4'/ + {l - [J (r - .)(// J}"'. (4.2)
It should be noted that the restriction (4.1) is physically plausible, as it holds true for
many cases of shells of revolution, e.g., ellipsoidal, paraboloidal and toroidal.

We now return to (3.14) and observe that condition (3.15) is fulfilled if 8 is a constant,
and this may be achieved by proper choice of y and k.

For shells of variable thickness, as seen from (4.2), condition (3.15) is satisfied
provided (y — k) {n2fha/h) -1 is constant. Hence, by (3.12),

" (('«>]' = "K f, - ^ (!)* <4-3)
which resembles the corresponding equation of the classical theory, first given by
Meissner [3] and derived in a different manner recently by Naghdi and DeSilva [9]; in
(4.3), K is a constant and the effect of the transverse shear deformation is represented
by the second term on the right-hand side.

For shells of uniform thickness, k vanishes identically and y in general will not be
constant. However, for numerous shell configurations,

5 = 1 - | iy(Sf jf) (4.4)
may be approximated to a constant, in which case the coefficient function Sf'2 reads

*2 = [1 + ivkU2\\f (4.5)
and (4.3) may be reduced to

h-I^E
V

6(1 + v) R
;]"■■ (4-6)

It follows from (4.6) that y and 8 will in fact be constant if both R( and Re are constant.
It is clear that this requirement is more restrictive than the corresponding result of
the classical theory [9] where h = (mK/v)Ri .

5. Formal solution of Eq. (3.20) by asymptotic integration. We conclude the present
paper by discussing formally the solution of the homogeneous differential equation
associated with (3.20), namely

Y" + [iVV + A]F = e*Xl , (5.1)
where is a large parameter.

It follows from the work of Langer [8] that corresponding to the homogeneous equa-
tion associated with (5.1), that is, the equation

Y" + [tW + A]F = 0, (5.2)
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there exists a related differential equation whose solution is asymptotic with respect
to /x to the solution of (5.2) and that its domain of validity is dependent upon the character
of the coefficient functions of Y. If £ ranges over an interval /f which includes a point
£0 at which (i) the function A may admit a pole of first or second order*, (ii) >1>2 may
contain as a factor the quantity (£ — £o)°"2, « being any real positive constant, and
(iii) both A and are analytic bounded elsewhere in I( , then the asymptotic solution
mentioned will be valid in the entire interval /£ including £0 . If, on the other hand,
the behavior of A and Sf2 at f0 does not meet the required specifications, then the solution
will be valid in a sub-interval of I( .

Thus, if we write A and 'J'2 in the form

A" + (Phs +A'®' (5-3a)
= (£ - (5.3b)

where A1 and Bx are constants, Ai is analytic and bounded with respect to n in I( , and
is a non-vanishing single-valued analytic function in Ic including £0 , then according

to Langer [8] the functions

M = (j _ j | (5-4)
\ ft ) I ¥,(»))

are the solutions of the related differential equation

»" + [,w + <F^5» + (A) + °®]»" °' (5'5)
where U is analytic and bounded with respect to n in I( , J„ and Yp are Bessel functions
of the first and second kinds, and

P = ~n, b = (1 - 4^),/2,
(5.6)

v = i3/V [l *0,) dv.

Writing At as

Ai = m + A(f), (5.7)
where A is also analytic and bounded with respect to n in I(, then (5.2) may be written as

K" + [<WC0 + ^+ 0<S> - -A(OK. (5.8)

Since the left-hand side of (5.8) is identical with the left-hand side of the related
differential equation (5.5), then, by the method of variation of parameters, there is
obtained

YHi = Vi + J £*(£, v)[Mv)YHi(v)] dv; j = 1, 2, (5.9a)

*In cases of ellipsoidal and paraboloidal shells of revolution of uniform thickness, A contains a pole
of second order at { = 0.
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where

£*(?, n) = rr'foi , yi)[y&)yM - ytiQvfa)] (5.9b)
and T, denotes the Wronskian of 2/, and y2 .

The integral equation (5.9) by the familiar process of successive iteration leads
formally to the relation

Yh< = vti) + Z yf\k), (5.10)
n-1

where

y{rl\t) = ['' V)AMn)(v) dv,
J(° (5.11)

vl°\& = »,(&.
The proof for the uniform convergence of X^-i 2/#"' in /{ is given by Langer [8] and
he has further shown that y, is dominant in (5.10) and thus, y,- is asymptotic with respect
to n to the solution YHj of (5.2).

Recalling that S as given by (4.2) is a complex constant, i.e.,

8 = a, + iS2 (5.12)

then, by (3.19) and (3.18),

4 (5.i3)
where dm denotes "imaginary part of". Treating (5.1) as a non-homogeneous differential
equation whose homogeneous solution is given by (5.10), then again by variation of
parameters, there results

Y, - Ya, - ff D%(z, ,){i e(v)Hv) dm (,) - (»)F,•(„)]} dv, (5 14a)

3 = 1,2,
where

dm, v) = r2-'(F„,, - yh,^)yhXv)] (5.i4b)
and r2 is the Wronskian of Y„x and YH, .

As in (5.10), by successive iteration, the integral equation (5.14) can be written
in the form

Yi = YHi - Z [x©(5.15)
n= 1

where

bc(Dl/"+I) = f( Aft, vMvWvnx&v)]? dv, (5

ixmr = i*m,
and X't is given by (5.13).
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The above solution is formally valid if M,-"' is uniformly convergent in I( .
On account of the interdependence on X of the various functions involved in (5.16), the
proof for the uniform convergence of the series in (5.15) for general shells of revolution
appears to be difficult and requires further investigation. Nevertheless, from the com-
parison of (5.11) and (5.16), it appears reasonable to except that ^ [x]/n> has in general
the same behavior as 23 uT\ so that

F, = YHi + 00 (5.17)

and hence, yt is asymptotic with respect to n to Yf .
Finally, it may be noted that whenever the right-hand side of (5.1) vanishes iden-

tically, as in the case of spherical shells where X = 0, the differential equation is of the
same form as the corresponding equation of the classical theory (Ref. [9]), although the
coefficient functions are not the same.
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