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THE ACCURACY OF DIFFERENCE APPROXIMATIONS TO PLANE DIRICHLET
PROBLEMS WITH PIECEWISE ANALYTIC BOUNDARY VALUES1

BY

WOLFGANG R. WASOW
University of California at Los Angeles

1. Introduction. The standard method for appraising the difference between the
exact solution u of a problem involving a partial differential equation and the solution
U of an approximating finite difference problem is based on the expansion of u by Taylor's
formula up to terms of third or higher degree. The partial derivatives of u that enter
the argument in this manner are unbounded near the boundary C of the region R where
the problem is to be solved, unless C and the prescribed boundary values are very smooth.

In computational practice the boundary and the prescribed boundary values are
almost always piecewise analytic. At the corners of C and at the points of C, where the
boundary values have a jump in the first or second derivative the higher derivatives
of u become usually unbounded. Therefore there prevails the unsatisfactory situation
that most known appraisals of the truncation error U — u in the numerical solution of
boundary value problems are based on assumptions which are hardly ever satisfied in compu-
tational practice.

The present note is meant as a first step to overcome this difficulty. It will be shown
that for the simplest finite difference approximation to Dirichlet's problem for Laplace's
equation the order of magnitude of the truncation error is not affected by jumps in the
first derivative of the boundary function. Of course, this is true only outside the immediate
neighborhood of those discontinuities.

It is frequently contended that, as the data of a mathematical problem of physical
origin are by their very nature only approximate, the discontinuities in the derivatives
of boundary values can be safely ignored in problems of this nature. However, there
are many problems where these discontinuities are a very accurate model of physical
reality, while their elimination by a smooth connecting arc would change either u or U
in a manner that cannot be guaranteed to be small without a further investigation like
the one given in this paper.

It is hoped that the method of this paper can be extended to more refined finite
difference approximations and to other differential problems as well as to problems
where the boundary C has corners.

2. Green's function for the difference equation. Let C be a simple closed analytic
curve on which is defined a continuous function /(s) that is piecewise analytic. By this
statement we mean that C can be described by two analytic functions x = x(s), y = y(s)
of period I, regular for real s, and that there exists a finite number of values of s, say
0 < Si < s2 ■ • • < sn < I, such that /(s) is continuous, periodic with period I, and regular
analytic in every one of the intervals s, < s < sv+i , v = 1, ■ • • , n, and sn < s < s, + I.
Furthermore, we require that (dx/ds)2 + (dy/ds)2 ^ 0.

Denote the interior of C by R. Then there exists a unique function u{x, y) for which

Am = 0 in R, u — f on C. (1)
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The function u(x, y) is regular analytic on C, except possibly at the points S, (v = 1,
• • • , n) of C that correspond to the parameter values s, .

We denote by Aa the finite difference operator defined by

AkU = h~2[U{x + h,y) + U{x - h,y) + U(x, y + h) + U(x, y — h) — W(x, y)].

Let Rk be the set consisting of all net points P in R such that the four nearest neighbors
of P in the grid lie in R -f C, and denote by Ch the set of net points in R + C which
do not belong to Rk ■ On Ck we prescribe a function fh = fk(P) whose value at a point
P of Ck is equal to J(s) at some point P' of C for which PP' < h.

The problem (1) is to be approximated by

AhU = 0 in Rh , U — fk on Ch . (2)

It is known that the truncation error v = U — u is 0(h) if d3u/dx3 and d3u/dy3 are
uniformly bounded in R. This was first proved by Gerschgorin in [1] by means of the
maximum principle for the operator A*, which states that a function U for which AkU = 0
in a set of gridpoints cannot have an extreme value in this set unless it is a constant.
Since the third derivatives of u diverge near the points S, of C, a stronger tool than the
maximum principle is now needed. Our study of the truncation error is based on the
asymptotic properties, for h —» 0, of Green's function for the operator Aa in Rk .

For the definition of Green's function we consider the problem

A47 = <p{x, y) in Rh , V = 0 on C. (3)

Its solution is clearly a linear combination of the values of <p(x, y) at the points of Rk , so
that we may write

V(P) = h* E Gk(P,(MQ). (4)
QtRk

Here we have written <p(Q) for <p(£, tj), etc. The factor h2 has been extracted in antici-
pation of a comparison with Green's function for the differential problem. Gh{P, Q) will
be called Green's function for the operator Ah in Rk . If (3) is interpreted as a system of
N linear algebraic equations for the values of V (P) at the N points of Rh , the N2 values
of h2Gk(P, Q) form a matrix which is the inverse of the coefficient matrix in the system
for V(P). Since the latter matrix is symmetric, so is Gk(P, Q):

Gk(P, Q) = Gk(Q, P). (5)
By applying (3) and (4) to the particular function <p(Q) — o(Q, Q'), where

(0, Q * Q'S(Q, Q') = < (6)
U, Q = Q'

it is seen that Gk(P, Q) is the solution of the problem

Ak.PG„(P,Q) = h~*6(P,Q), PcR h f

(7)
Gk(P, Q) = 0 , PtCk.

The subscript P in the symbol Ak.P means that the operator is to be applied with respect
to the variable P. The function Gk(P, Q) is non-negative in Rh . For, Gk(P, Q) cannot
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be a constant, because of (7). If it is negative anywhere in Rh , there must be a point
P = P0 in Rh where Gh(P, Q), as function of P for fixed Q, has a negative minimum, while
Gh(Pj, Q) > Gh(Pa, Q) for at least one of the four nearest neighbors P, ,(j = 1, • • • , 4),
of P0 in the grid. However, the difference equation in (7) implies that

Gk(.Po , Q) > 1 E G(PI , Q),
i-1

and therefore Gh(P0, Q) must also exceed at least one of the four values Gh(P,-, Q), which
is a contradiction to the minimum property of P0 ■

The asymptotic study of Gh(P, Q) is based on certain results contained in [2], It will
be convenient to write Sin and Cos instead of the usual symbols sinh, cosh for the
hyperbolic function in order to avoid confusion with the trigonometric functions of the
mesh length h. We shall be concerned with the function

, x 2 r 1 - cos(rX)e-""* „t) "; J. — -\v\n

where n is the function of X defined, for 0 < X < ir, by the equation

cos X + cosh n = 2

and the condition lim ju/X = 1. It was shown by McCrea and Whipple [2] that x(f, r)
has the following properties.

1- x(<r, t) = x(t, <t),

2. x(0, 0) = 0,

3. x(<r + 1, t) + x(* ~ 1, r) + \{<r, r + 1) + xfa, r — 1) — 4x(<r, r)

|0, t2 + (T2 ̂  0

(4, <J = T = 0,

4- x(f) t) = - log (cr2 + r2) + c + 0((7~s), uniformly in r,
7T

as a —» 00. Here, c = (1/V) (log 8 + 2y), and y is Euler's constant.
Actually, McCrea and Whipple give only 0(cr-1) as the order of the remainder terms,

but their own calculations show that the stronger result is true. For reasons of symmetry
we replace the error term by 0 [l/(<r2 + r2)], which is permissible in view of property 1.

It follows, then, that the function

has the properties

i'- 7*(z, y) = 7*(y, x),

2'. 7/,(0, 0) = ^ log h - c,
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x2 + y2 * 0

x = y = 0,
3'. A„7a(x, y)

4'. 7.(1, It) - g log fx' + + oMU\x + y /

The function — yk(x, y) is a discrete analog of a fundamental solution for Laplace's
equation. We now introduce the function

Hh{P, Q) = -yk(x -Z,y- v), (8)
where (x, y), (f, ij) are the coordinates of the points P, Q, respectively. Then we have,
by property 3',

Ah.PHk(P, Q) = h~25(P, Q). (9)

In order to compare the asymptotic behavior of Hh(P, Q) with that of Gk(P, Q) we
introduce the difference

eh{P,Q) = Gk(P,Q) - Hk(P,Q), (10)
which, because of (7) and (9), satisfies the difference equation

A».Pe»(P, Q) = 0, P t Rk (11)

and the boundary condition

eh(P,Q) = -Hh(P,Q), P tCk . (12)

We shall show that

eh(P, Q) = i(P, Q) + 0(h), for P tRk , Q 9^ P, and Q not on C, (13)
where \P(P, Q) is, for P t R, the harmonic function of P with boundary values

i(p, Q) = £ log PQ, PtC. (14)

To this end we expand Ak.p\f/(P, Q) by Taylor's formula and use the fact that ^(P, Q)
is, for Q not on C, a harmonic function of P in the closed domain R + C, thanks to the
analyticity of the curve C (see [5], p. 187). Then we obtain

VpiKP, Q) = 0(h2), PtRk, Q not on C. (15)
Also, by property 4' and formulas (8) and (14),

i(P, Q) = -Hk(P, Q) + 0(h), P*Ck, P*Q. (16)
The last two formulas are valid uniformly in Q, if Q is bounded away from C by a positive
distance independent of h and if PQ > ah1/2, where a is a positive constant independent
of h. If we subtract (15) and (16) from (11) and (12) we find

^.Ph(P, Q) - i(P, Q)] = 0(h2), PzRk, Q*P, (17)

ek(P, Q) - i(P, Q) = 0(h), PtCk, P * Q. (18)
It is well known, and easy to prove by means of the maximum principle for the operator
Ak , (see [1]) that the Eqs. (17), (18) imply indeed (13).
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Finally, we replace eh(P, Q) by its definition (10), and use once more property 4'.
Then we see from (13) that

Gh(P,Q) = - ^logPQ+ *(P,Q) + 0(A), PtRh, Q*P, QnotonC.

The first two terms in the right member together constitute Green's function in R for
Laplace's operator A. Hence,

<?„(P, Q) = G(P, Q) + 0(h), iorPtRk, Q * P, Q not on C. (19)
We repeat that this relation is uniformly valid, if Q is bounded away from C by a positive
distance independent of h, and if PQ > ah1/2.

3. The behavior of harmonic functions near corners of the boundary values. We
consider first the special case that C is the unit circle and that u(x, y) = um(x, y) is a
function from the sequence defined recursively by

u„(x, y) = Re F„(z), z = x + iy,

r (20)F0(z) = i log (1 - z), Fm{z) = -i J dt, itR + C.

If
1 - z = pe'a,

we take the branch of log (1 — z) defined by | a \ < %/2. Then Fa(z) is regular analytic
in R + C except at z = 1, and

F0(z) = u0(x, y) + iv0(x, y) = -a + i log p.

On the boundary,

ua{x, y) = f0(6) = T 2 9 ' 0 < e < 2tt.

Hence, /o(0) is continuous except for a jump of size t at 6 = 0. For m > 0 the functions
um(x, y) and vm(x, y) = Im Fm(z) are continuous in R + C. On C we have z = e'6 and
therefore

Fm{z) = Fm-y(zV" + ■■■ , ztC,
dd

i.e. the boundary values /m(0) of um(x, y) have the derivatives

= fm-,(6) cos vd — vm-,(x, y) sin vd + • • • , (x, y) e C,

where the dots indicate terms involving higher subscripts. This proves the continuity
of /m'(0) for v < m. For v = m, the first righthand term has a jump of size (—1)"V at
0 = 0. The second term equals log p sin vd, which has the limit 0 at 0 = 0. All the other
terms are continuous, so that the jump of (— 1)"V characterizes the behavior of /im)(0)
at 0 = 0.

The partial derivatives of um(x, y) of order v < m are continuous in R + C. This
follows directly from the definition of um(x, y) in (20) and the Cauchy-Riemann equa-
tions. The mth derivatives are multiples of u0(x, y) or v0(x, y) and are therefore 0(log p),
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at worst. If v > m, the derivatives are—except for numerical factors—the real or imagin-
ary part of d"~m/dz"~m log (1 — z). Their order of magnitude is, thus, 0(p'_,n).

Now assume that the boundary function f(s) = f(8) of u(x, y) is regular analytic
on the unit circle C except at 6 = 0, (i.e. z — 1), where it has a jump of size K in the
pth derivative, while the derivatives of lower order are continuous. The function /(0) —
(— l)"(K/ir)fp(d) has then continuous derivatives on C up to order p inclusive. If it has
a discontinuity in the (p + l)st derivative, this can also be eliminated by addition of a
suitable multiple of fv+i(6), and so forth. Hence, there exists a linear combination

f*(e) = M + aoW) + aj,+ l(d) + • • • + «JP+,(0)

with continuous derivatives of order p + q and, at worst, a jump in the (p + q + l)st
derivative. The harmonic function with boundary values f*(6) on C possesses then
continuous derivatives up to order p + q, inclusive in R + C (see [3], p. 243]. Therefore

'+a L"0 dx"*" a dx'+Q J

, nfsaZl , l°0os p>' q~°
\0(p-°) , q > 0

dp+°u (°(loS 1 = °»

dx

(21)

and, similarly,

~ , , > 0. (22)

A similar discontinuity of a derivative of f(6) at any other point 6 = 60 on the unit
circle C can be analyzed by means of auxiliary harmonic functions obtained from um(x, y)
by a rotation through the angle 60 . If more than one point with discontinuities in the
derivatives of f(6) occur they can be handled simultaneously Jay adding a sum of ap-
propriate compensating harmonic functions. Finally, if C is not the unit circle R can
be changed into the interior of the unit circle by a conformal mapping. The mapping
function and its inverse transform harmonic functions in R into harmonic functions
inside the unit circle, and conversely. Since C is analytic the mapping function is analytic
in C + R and hecne the transformed boundary function is harmonic at all points of the
unit circle except those corresponding to the points S,-, j = 1, • • • , n on C. Furthermore,
the orders of magnitude of the harmonic function in R near the points are the same
as those of the image function in the unit circle. Hence, we have proved that the solution
u(x, y) of problem (1) is harmonic in R + C except at the boundary points Sj , where /(0)
is not analytic. At those points the order of magnihide of the derivatives for approach in
R + C is determined by the formulas (21) and (22).

4. The truncation error for Dirichlet's problem. The truncation error v = U — u
for the approximate solution of problem (1) by means of problem (2) is the solution of
the problem

A„v = —Ahu , in R* , (23)

v = fk ~ m, on C\ . (24)
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By Taylor's formula we have

h ra,u(x, y) = - + 9h> y) - ^u(x - eh> y) + d^u(-x' y + eh)

^ i
(25)

d3- ^3 u(x, y - eh J

with 0 < 6 < 1. We know from the preceding section that d"/dx3 u(Q) and d3/dy3 u(Q)
are 0(Q<S'~2) near S,- . For simplicity we consider only the case that there is no more
than one singular point S,- = S on C, and set QS = p. The extension to a finite number
of such points is trivial.

From now on we must subject the choice of grids to the important restriction that
the distance of the points S, on C from the nearest grid line be at least bh, 0 < b < 1, where
b is independent of h. Then the right member of (25) does not exceed Kihp~2 in R, where
Ki is a constant depending on /(s) and on b, not on h, i.e.

| | < Kxhp~\ (26)

In order to arrive at an appraisal of v we represent v as the sum v = Vi + v2 of the
solutions of the problems

= -Aku, in R„ ,

vt = 0 , on C»

and

Am = 0 , in Rh ,
(28)

v2 = /* — u, on Ch .

Discussing i\ first we represent this function in the form (4) and make use of (26),
obtaining

I v»(P) | < hKt £ h2Gh(P, Q)p~\ (29)
QtRk

If we extend the definition of Gh(P, Q) in an appropriate manner from the points of
Rh + Ch to all points of R + C, the sum in the right member can be replaced by an
integral. To this end we associate with every square of the grid that lies entirely in
R + C the value of Gk(P, Q) as function of Q, at its lower left vertex. At the remaining
points of R we define Gh(P, Q) as being zero. Then

Z h2Gh(P, Q)p~2 = ff Gk(P, Q)P-2 dQ + 0(h). (30)
QtRk

R

Since Gh(P, Q) is symmetric in P and Q, we can appraise the integral above by means
of the asymptotic formula (19), -provided P is restricted to some proper closed subdomain
R' of R. Let

R = Ri + i?2 "h Rz ,

where Rx is the circular region PQ < ah1/2 about P, the domain R2 is closed and satisfies
R' C Ri + R2 C R, and, finally, R3 = R — Rx — R2 .
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We show first that

ff Gt(P, Q)P"2 dQ = 0(h log h). (31)

To see this we observe that the function | eh(P, Q) | assumes its maximum on Ch, because
of (11). In view of (8), (12) and the definition of yk(x, y) it follows that | ek(P, Q) | remains
uniformly bounded, for Q t R', as h —> 0. Since Hk(P, Q) = O(log h), in consequence of
property 2', we see from (10) that

Gh(P,Q) = Odog/i), (32)
if Q t R' or if P t R' (the latter because of the symmetry of Green's function). This
proves (31).

Furthermore

Jf G,(P, Q)P~2 dQ = fj G{P, Q)p~2 dQ + fj 0(h)P-> dQ, (33)
R a R a R »

by (19). The first integral in the right member exists, because p'1 is bounded in R2, and
the last integral is 0(h). Thus

fj Gk(P,Q)p'2dQ = 0(1). (34)
Rt

In the remaining integral JJS, Gh(P, Q)p~2 dQ we make use of the fact that Gh(P, Q)
is, by definition, zero whenever Q is a point of a gridsquare that does not lie entirely in
R + C. The point S lies in such a square; in fact, it has at least the distance bh from the
edges of this square by virtue of the hypothesis introduced in the paragraph after formula
(25). Therefore, R3 may be replaced in the integration by a subregion R* that has at
least the distance bh from S. Using again (19), it follows that

// G„(P, Q)P"2 dQ = ff G(P, Q)p'2 dQ + fj 0(h)p~2 dQ.
K, R.• fi.*

The first integral in the right member is bounded, because G(P, Q) vanishes on the
boundary and is there continuously differentiable so that

G(P,Q)<K2P, PtR', QtR3.

The last integral in the right member does not exceed

b- Jf | 0(h) | /TV1 dQ,
R3*

which is bounded. Therefore

ff Gh(P,Q)p~2 dQ = 0(1). (35)
R 3

If (31), (34) and (35) are inserted into (30), the inequality (29) is seen to imply that

V\(P) = 0(h), PtR'. (36)
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We now turn to the appraisal of v2. In order to make our analysis of Green's function
available for this problem, we use Green's formula for the operator Ah , which can be
written

k2 £ (FAkU - UAhV) + fc E (VT„U - UT.V) = 0, (37)
Rh C k

(see [4], p. 36). Here U and V may be any two functions in the grid, and the operator
ThU is defined as follows: Let Q be a point of Ch and denote by Q, , (j — 1, • • • v < 3)
the gridpoints in Rh at distance h from Q, then

TkU(Q) = h~'[Um + ■ • • + V(Q.) - vU(Q)]. (38)

We apply (37) with V = v2(Q), U — Gk{P, Q) and find, using (7) and (28), that

v*(P) = ~h E Th.Q[Gk(P, Q)][f„(Q) - u(Q)]. (39)
QtCk

Now, by definition, /»(Q) = f(Q') where Q' lies on C, and QQ' < h. In analogy with the
hypothesis introduced after formula (25), we have to restrict the choice of Q' somewhat by
requiring that the distance from S to the points of the segment QQ' be at least bh uniformly
for Q on Ch . By the theorem of the mean

f»(Q) ~ u(Q) = f(Q') - u(Q) = £u(Q") • QQ',

where d/da indicates differentiation in the direction from Q' to Q and Q" is a point
between Q and Q'. We proved in Sec. 3 that the first derivative of u at the point Q" in
any direction is 0(log p"), the letter p" designating the distance SQ". With the help of
our restriction on Q' we shall show first that

I UQ) ~ u(Q) | < KM | log P | + 1), (40)
being independent of h and p. By assumption, p > bh and QQ" < QQ' < h, whence

QQ" < p/b. Therefore, p" < p + QQ" < p( 1 + 1/6). Using our other assumption that
p" > bh we show analogously that p < p" + QQ" < p"( 1 + 1 /b). The ensuing double
inequality

log p - log (l + |) < log p" < log p + log ^1 + ^

implies that

| log p" | < max | log p + log (i + |) . loS P ~ log (x + }

< | log p | + log (l + i),

and, therefore,

£u(Q") • QQ' = 0(h log p") < Kth( | log P I + 1).

On Ck the relation (19) can be used, if P t R't and this implies that Gk(P, Q) is 0(h),
for Q tCh . Using (38) and (40) we obtain then from (39) the inequality



62 WOLFGANG R. WASOW [Vol. XV, No. 1

I v2(P) | < Kth £>(1 logp | + 1), (Kt a constant). (41)
Ck

It is plausible that

EMI logp | + 1) = 0(1). (42)
c»

The simple proof of this statement will be postponed to the end of this section. On the
basis of (41) and (42) we have

I v3(P) | = 0(h), P t R'.

This relation, together with (36) completes the proof of our main result, which we now
state as a formal theorem.

Theorem: The truncation error v(P) = U(P) — u(P) corresponding to the approximate
solution of problem (1) by means of the equations (2) is of order 0(h), provided the following
conditions are satisfied:

(a) the boundary C is a simple closed analytic curve;
(b) the boundary function f (s) is continuous and piecewise analytic;
(c) the distance from the singularities of f (s) to the nearest point on a grid line is not

less than bh, (0 < b < 1, independent of h).
(d) If fk(Q) = f(Q')> Q' « C, then the distance of the singularities of f(s) from the

segment QQ' is not less than bh.
The truncation error v(P) has the order 0(h) uniformly in every closed subdomain of R.

Proof of formula (42). We show first that the total number M of the gridpoints in
Ch is 0(A_1). The analytic curve C possesses only a finite number of points where either
dx/ds or dy/ds vanishes. These points divide C into a finite number of arcs each of which
does not intersect the same grid line twice. Hence, if C° is one such arc and if the lengths
of its projections on the axes are Lx and Lv , respectively, then the arc C° possesses at
most (Lx + L„ + 2)h~x points of intersection with lines of the grid. It follows that the
total number of intersections of C with lines of the grid is 0(h~l). Now, every point of
Ch is an end point of a mesh side of length h that has a point in common with C. Hence,
M = 0(h~l), as claimed, say,

M < Lh~\

For sufficiently small h no closed segment of length h joining two gridpoints will have
more than one point in common with C. Then exactly one of the two end points of such
a segment belongs to Ck . We now measure the arc length s on C from S and order the
points Pr of CK in such a way that r, < r2 if and only if PT% is an end point of a segment
that meets C at a point with smaller value of s than any grid segment ending at Pr, .
Then SPr < 21/2 rh and, therefore,

£ h(I log P I + 1) < £ A(| log 2u\h I + 1)
Ck r-1

/» £r + A

< / (| log 21/2t | + 1) dt < Ki , (Ks a constant),
Jo

which proves (42).
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