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Abstract. Closed form expressions are developed for the output of a frequency
modulation receiver for an arbitrary number of superposed input signals. This corresponds
to problems of interference or disturbance due to scatter and multiple reflexions. It is
also shown how the Fourier components of the output may be evaluated by methods
more direct than the usual Fourier analysis.

Introduction. A frequency modulation receiver is essentially a non-linear device.
The input signal is usually fed into two non-linear filters, first into an amplitude limiter
which reduces the signal to a constant amplitude, then into a discriminator whose
output is a rectified signal with an amplitude proportional to the frequency deviation
from the carrier frequency. Sometimes this output of the discriminator is processed
through a linear filter which eliminates all but a few frequency components of the
modulation.

Because of the non-linearity of the system, special methods must be devised to
evaluate the output due to the superposition of input signals. The procedure presented
here yields closed form expressions for the output when an arbitrary number of signals
or a continuous distribution of them are superposed. The results may be used to predict
interference effects or the disturbance due to multiple reflexions or scattering of the
main signal. The method makes use of the concept of instantaneous frequency. The
limitations of this concept in analyzing the behavior of frequency modulation circuits
was discussed extensively by Carson and Fry1 and Van der Pol2.

The general theory is developed in Section 1 for the case of an arbitrary input repre-
sented by a continuous spectrum. This is applied in Section 2 to the case of an arbitrary
number of signals with a single modulation frequency. It is also indicated how the
method applies when there is more than one modulation frequency. Section 3 deals
with the Fourier analysis of the output. Because of the fact that the expression for
the output is in the form of the quotient of two Fourier series, methods more direct
than the usual Fourier analysis are applicable. It is shown that the Fourier coefficients
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may be evaluated directly by use of the theorem of residues of analytic functions. The
method yields directly the Fourier components of the output in both amplitude and
phase for any number of superposed input signal. In particular, the input may be repre-
sented by the superposition of its spectral components. This has an important bearing
on scatter problems since it is then reduced to the calculation of the scatter for each
monochromatic component. The procedure has been applied to a number of practical
cases and found to be quite satisfactory from the standpoint of simplicity and accuracy.
These applications along with some further simplifications will be presented in a sub-
sequent paper.

1. General expressions for the output signal of an FM receiver. We consider an
input signal which is both amplitude and frequency modulated,

E(t) = §/(<)[exp (uf>) + exp (-&*>)] (1.1)
with

<£ = i»ct +

where represents the carrier frequency, <p{t) the frequency modulation and I(t) the
amplitude modulation. In the receiver the amplitude is first reduced to a constant
value in a limiter circuit. It is then processed through a discriminator. This is usually
made of circuits slightly off resonance with the carrier frequency, such that the output
is a rectified voltage proportional to the frequency deviation of the signal from the
carrier frequency. This frequency deviation being d^/dt — «c , the ouput of the receiver
is then given by

*(f<i2»
Sometimes this output signal is passed through a linear filter so as to extract frequency
components in a narrow band.

In practice, the signal is not always given in the form (1.1) so that one cannot use
(1.2) to evaluate the receiver output. In particular, we are interested in the calculation
of the receiver output when the incoming signal is given by its spectrum

« + »£«> - L G(u)eiat du. (1.3)

We establish a mathematical processing of the expression (1.3) by which it is possible
to evaluate a quantity proportional to the rate of change of the phase angle <f>, hence
also proportional to the receiver output. To do this we apply to the signal a linear operator
which consists in replacing its spectrum G(co) by

G(«)(l + m, (1.4)
where

fl = I 01 I — uc*

is the frequency deviation of the spectral component from the carrier frequency. The
effect of this linear operation on the signal can be readily evaluated in the form (1.3)

*If we wanted to restrict ourselves to analytic functions, the same purpose could be accomplished
by putting fi = (w* — u2c)/2uc .
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by multiplying G(a) by 1 + Kil in the integral. We shall now introduce the basic as-
sumption of the method, namely that this operation is approximately equivalent to
multiplying the signal by the factor

A = l + K(1.5)

This assumption is essentially the same as that upon which is based the design of a
discriminator circuit, namely that the response of the circuit to the instantaneous
amplitude and frequency of the signal is the same as in a steady state. The assumption
will, of course, apply if the frequencies at which the amplitude, 7, and phase angle, <p,
vary are very much smaller than the carrier frequency, we .
If we consider the signal in the form (1.1), it becomes

Exit) = £A/(0[exp (if) -f exp (—i<t>)]. (1.6)
Squaring this quantity we obtain

Kit) = hA'l2 + lA'J2[exp (2i<t>) + exp (-2*)]. (1.7)

We notice that the first term represents the low frequency components, while the second
term represents the high frequency components. In practice, these components are widely
separated. We may write

££?(<) = (1.8)
where the symbol.£ signifies "low frequency part of •••". Similarly, if we square the
original signal E(t) we may write

£E\t) = hi*. (1.9)
Hence,

|gg _ A"-1 + 2K £ + *■(%)". (1.10)
The linear term in K in the expression is proportional to the output signal of the receiver.
We may write this output signal as

(UI>

This expression will now be evaluated in terms of the representation (1.3) of the input
by means of a spectrum. The square of the signal is the double integral.

E\t) = f+" G(QG(<o)ei((+"u dtda. (1.12)
J —CO J — 00

The integral is extended to the infinite plane. We introduce the following change of
variables

f = h(v + f), « = Kl — f) (1.13)
and derive

m -1 f" d* «■ <114>
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The spectrum of 2E2(t) is therefore

r<"> ■ «■

In evaluating this expression we take into account the fact that G(u>) is small except
in the vicinity of &> = ± ue . Hence, the contribution to the integral will be only in
the vicinity of the four points (see Fig. 1).

i '■*-* >

'•a

H J

\

Fig. 1.

Pi : tj = 2ojc f = 0

P2 : v — —2uc f = 0

P3 : rj = 0 f = 2o>e

P4 : v = 0 r = -2«.
The low frequency components of E2(t) are therefore given by integrating (1.14) in the
vicinity of points P3 and P4

&E2{t) = \ /, „ dS' (L16)

the integral being evaluated over elements of area dS in the vicinity of P3 and Pt .
Similarly, the low frequency components of El(t) are given by

= | JP P [1 + K(\ CO I - We)][l + X(U I - dS. (1.17)

Hence,

Har^L
-1K (iiril+^ ds-

From (1.16), (1.18), and (1.11) we derive the receiver output

M(,) -K +iirJLj - ds (M8)

■{J,.,."}"•

(1.18)
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We have thus expressed this output in terms of the input spectrum G. It is seen that,
as required by the problem, this expression is independent of the input amplitude.
Expression (1.19) may be put in a somewhat different form by introducing

*•<,) - /;; +v1 - -M^XV)«
(1.20)

The equivalence of these two expressions is easily seen if we replace the variable f by —f.
This function constitutes the spectrum of the numerator of expression (1.19). With the
spectrum R(v) of the denominator, as defined by (1.15), we may write

M(t) = K f F(v)eif" dv{f R(r,)e"" drj '. (1.21)

The integrands in the expressions for F(ij) and R(tj) are different from zero only in the
vicinity of f = ± 2wc and the variable i? is restricted to the vicinity of the origin. The
range of integration — e < i; < + e is that of the low frequency portion of the spectral
functions F(ij) and R(y). According to the footnote remark ('), we could also write
for F(ti)

i [j <*• <i*»
This expression will be approximately equal to (1.20).

2. Application to the superposition of sinusoidally modulated signals. In certain
cases the input signal is made up of the superposition of signals whose frequency modu-
lation is sinusoidal with a common carrier frequency, but with a different phase for
each modulation. The signal is then expressed as

2E(t) = X] Ri exP + **Pi + *(^f) sin (co,Z -f- ̂ ,)J

+ X R*i exp £ —io>ct — i*Pj — sin («i* + ^,)J,
(2.1)

where R, and R* are complex conjugates. Such a signal occurs, for instance, in the
case of multiple reflection or scatter. In this case the phase differences are

*>' = ~Ucti ' (2.2)

4>j = — wit, ,

where tt is the time lag for arrival of the jth component in the receiver. In order to
apply the results of the previous section, we must represent the signal by its spectrum.
We make use of the identity

oo

exp (t/3sin 6) = ^ JJfi) exp (nid), (2.3)
n- — oo

where Jn is the Bessel function of the first kind of order n. By putting /3 equal to the
modulation index
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Aco0 = — (2.4
CO;

and
Bn = E/ exp (upi + ini,) ^ ^

-B? = E> exP ("»¥>/ - *»tf/)
we may write the signal as

00 00

2£7(f) = X) exP + »««!<) + -B^n exp (—iwci — inuit). (2.6)
n- — co n--co

This latter expression constitutes the expansion of the signal into a discrete spectrum of
equidistant frequencies. The integration (1.3) is here replaced by a summation. The
low frequency components of the square of the signal corresponding to expressions
(1.16) are given by

4£E2(t) = Z BnB*Jl
—a>

+ 00 +00

+ exp (W) E + exp (-»«,<) E BnB*+lJnJn+l (2.7)
n — -co n- — co

+ ao +ao

+ exp (2iwi<) E BnB*.2JnJn.2 + exp (—2ioilt) E BnB*+2JnJ„<.2

+ etc.

We note that

E BnB;+lJnJn+1 = E BK+1B*J«-iJn
»« — C8 n- — 00

+ 00 +00

E B*B*+2J n J n+2 = E B„-2B*J n—2J „ (2.8)
n- — co

etc.

(2.9)

and put

c* = E bjiujj.-h
»- — CO

Ct = £ B*Bn-kJnJn-k .
n — — co

Then (2.7) may be written

4££2(<) = Co + £ [Crf""'' + Cte-,t*"']. (2.10)
*-1

We must also evaluate i?i(2). This is obtained by multiplying by 1 + Kti each frequency
component in the expansion (2.6) of E(t). In this case

a = | a, | - coc (2 n)

u = ±(coc + noii).
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We note that in practice the terms in the series (2.6) are vanishingly small for | n | > /3
because, in that case, Jn = 0. It is therefore legitimate to write

(2 = nwi . (2.12)

Putting

Am = 1 + nKwy (2.13)

we find
+ « + CD

2Et(l) = E A.B.Jn exp (ioict -f + E AnB*nJn exp {—iuct — inutt). (2.14)

Proceeding as before

4£2??(*) = F0 + E [F* exp + F% exp (—ifeo,t)] (2.15)
i-1

with

Fk = E A.A.-kB„BUJ.J.->
n- — co

+ co
(2.16)

ft = E A.A.-tB*mB.-kJ.J.,k .

In order to obtain di/dK £E*(t) we consider the factor which is the only one to
contain K. We have

AnA.-t = [1 - ntfw,][l + (n - (2.17)

and

AnA„.,] „ = (2n - JbV, . (2.18)

Hence,

4[dl 0 = UiHo + 0)1 £ lHt exP + H* exP (—«fcwiO] (2.19)

with

H> = E (2n - k)B.B;_tJ.J.-t
(2.20)

= E (2» - k)B*B.-kJJ^t .

The output signal due to the input .£(<) given by (2.1) is

= 2££a(<) [dK £H*-o

^ H0 + E exp (ikuit) + H\ exp (-iuM)]
Afa?l  fc.-co 

2 +00
C0 + E [C* exP {ikuit) + C*k exp (—io>ikt)]

t--oo
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The same method may be applied if the superposed signals are not modulated by a
single sinusoidal component. Consider, for instance, a signal component /?,(<) con-
taining two simultaneous modulation frequencies u, and .

E,(t) = exp \ioict + zV, + ip2] + exp [—iwct — i<pt — A®2] (2.22)

with

ft = ftsin«,l (223)

ft = Pi sin u2t.

Using the identity (2.3) the spectrum of Ef{t) is obtained by writing

Ej(t) = exp iwj exp i<pt exp upt

= exp iuc Z) exp £ J.(£2) exp (inaj,f)J-
(2-24)

Performing the multiphcation yields a discrete spectrum. However, this time the
frequency intervals are not equal. From (2.24) we derive the spectrum due to the super-
position of signals of the type (2.22) with individual time lags and amplitude factors
as in (2.1)

m = £«#*,(«- *.)- (2-25)i
Proceeding as above, the spectrum may be used to evaluate the receiver output due to
this superposition.

3. Fourier analysis of the receiver output. We consider the case of the superposition
of input signals modulated by the same modulation frequency w, . We have shown that
the output is given by expression (2.21) which is the quotient of two Fourier series. It
is, itself, a periodic function of frequency oh , which we may expand into a Fourier
series. We omit the constant factor in expression (2.21) and write, putting g>,< = r

Ho + £ exp (ikr) + H*k exp (-ifcr)]
M(t) = ^ 

C0 + X) [Ci exp (Oct) + C*k exp (—ikr)] (3.1)
*=1

= M0 + £ exp (ifcr) + Aft exp (—ifcr)].
4—1

If the receiver output is filtered through a lowpass filter so that only the fundamental
component of the Fourier series of M is observed, we must evaluate the coefficients
Mt and M* . We have

2xM, - f Af (r) exp (—j't) dr
(3.2)

2tM* - f M(r) exp (it) dr.
Jo
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The integrals may be evaluated by a method which takes advantage of the particular
form of the function M(t) in the present case. Consider the second integral and change
the variable of integration t to a complex variable p

p = exp (ir) (3.3)

and express M (r) in terms of p

Ho + E [H>Vl + H*kP k]
M(r) = £ (3.4)

Co + E [Ctpl + c\p-k)
t-1

The value of M\ is then given by the contour integral on the unit circle

, r H0 + E [Htpk + H\p~k]
M* = iri 9 TT dp. (3.5)

Co + £ [CkVk + C\p~k]
Jk-1

The value of this integral is equal to the sum of the residues and depends on the poles
contained within the unit circle. There are multiple poles at p = 0 and poles corre-
sponding to the roots of the denominator. These are the roots of the equation

Co + E [Ckpk + C\p~k] = 0. (3.6)
i — 1

If
?! = rx exp (iOt) (3.7)

is a root of this equation, then
■fto

Co + E [C*n exp (ikOt) + Ctn' exp (-ifc0O] = 0. (3.8)
t-1

The conjugate of this expression must also be zero, hence,
+ oo

C0 + E [CtrJ exp (—ikOi) + Ckr^k exp (ikOi)] = 0. (3.9)
A-l

But this expresses that

p2 = — exp (ifl,) (3.10)
' 1

is also a root of equation (3.6). Therefore, the roots are grouped in pairs of the same
argument 0l and such that the product of their moduli is unity. Half the roots will be
inside the unit circle and to each of these roots corresponds an outside root on the same
radius from the origin. If there are roots on the circle, the above conclusion does not
hold. However, since the expression (3.6) on the circle represents the square of the
amplitude of the input signal I2{t), this can only happen if the input vanishes. As an
example, let us consider the case when the denominator contains only C0 and Ci . This
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will often be the case in practical applications when higher order terms are negligible.
Denote by N(p) the numerator of the integrand in (3.5). This integral becomes

<3">

The roots of the denominator are

_ -Co + (fl - 4C.C1)1'2
p> — 2 r

(3.12)
_ -Co ~ (Cl - 4C1CVW2Vl ~ 2 C,

We shall assume the radical is real, in which case the roots are not on the unit circle.
Moreover, if p, is inside the unit circle, the other root p2 is outside.

The integrand of (3.11) is

H0p + £ [Hkpk+l + H*p't*1]
j>m   _-i (3.13)

C,p + CoP + C\ Ciip - p,)(p - Pa)

There is a residue due to the root p, and residues due to the terms H*kp~t+l for k > 1
corresponding to poles of order k — 1 at the origin. The sum of residues inside the unit
circle is

lf, p1N(Vl) a Ht r dk-> / i \i
1 ~ c,(Pl - P2)+ h (fc - 2)! Ldp*-2 VclP2 + c0p + c*JJp.0 *

This expression gives the phase and amplitude of the fundamental Fourier component
of the output signal. If the denominator contains more terms than assumed here, we
must solve a complex algebraic equation of higher degree and similarly evaluate the
residue for these roots inside the circle. If the numerator N(p) contains only one Fourier
component

N(p) = Ho + HlV + H*p~l (3.15)

then (3.14) reduces to the very simple form

AT* — Pi fO 1 c\
Ml~ (C2o - 4C,C1):1/2 ' (3-16)

Instead of using the theory of residues, another method of computing the coefficients
Mk of the Fourier expansion (3.1) is to write

Ho + E [H*pk + H*kp~k]
   = Mo + E [MlPl + M\p-k\ (3.17)
C„ + £ [Ctp* + C\p~k]

fc-i

considering Mk as undetermined, then to multiply both sides of this equation by the
denominator and equating coefficients of the same power of p.


