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ON THE SOLUTION OF A DIFFERENTIAL EQUATION WITH NONLINEARITY
APPEARING IN THE SECOND DERIVATIVE OF COMBINED LINEAR AND

CUBIC TERMS*

BY

CHI-NENG SHEN

Thayer School of Engineering, Dartmouth College

1. Introduction. One commonly analyzed application of automatic controls to
processes is shown schematically in Fig. 1. Here a linear feedback controller is used to
control a two-capacity process. The process involves two linear capacities or tanks in
this case, and two linear resistances. The analysis of this process is treated in detail in
the literature and in the texts on automatic control. The solution is simple and straight-
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Fia. 1. Linear two-capacity process with controls.
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Fia. 2. Single nonlinear capacity of two-capacity process.
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forward. If, however, nonlinear elements are introduced, the problem becomes more
complex and cannot be solved in the conventional manner.

If tanks of the form shown in Fig. 2 are used, the capacity is nonlinear. The capacity
of a parabolic tank may be expressed by an equation of the form:

Volume = C(z + az® + vz°). ¢))
If v is small, this equation reduces to:
Volume = C(z + oz®). )

oF SYMMETRY

Axis oF RevoLuTion

Fi1a. 3. Nonlinear capacity, neck shaped vessel.

In tanks of the form shown in Fig. 3, a is positive, and for the form shown in Fig. 4,
« is negative. This expression also will give the approximate volume of many other

tank forms.
If a system consists of tanks, the volume of which may be expressed in the form of

Eq. (2), the differential equation which defines the behavior of the system may be
written as:

C, % =ay + a¥: + as, (3a)
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d
C, dt (v + ay:) =bwy + by + by, (3b)

where a, b, ¢ with subscripts are all parameters.

The purpose of this paper is to indicate a solution which describes the behavior of
such a system. However to facilitate the analysis, it will be convenient to make certain
transformations and to discuss the problem in terms of trajectories in the phase-plane.
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FiG. 4. Nonlinear capacity, barrel shaped vessel.

By solving for y, in Eq. (3b), differentiating and substituting the value of y, and
dy,/dt into Eq. (3a), it can be shown that:

m;di:i(yz+ay:)+mz%(y,+ay:)+m%y,+m‘y’_'_m5=0, (4)

where m’s are all parameters.
By a suitable transformation, the differential equation, Eq. (4), may be reduced to
the form:

Ly +m i+ My - ®)

The quantities 8, M, , M, , and r are all parameters. This equation differs from the
standard nonlinear differential equations for which solutions are available.
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If V is defined as:

S

Y
V—ﬁ’
then ’

;i'-i;(Y + BY®) = (1 + 38Y?)V,

2 o d
Thus, from Eq. (5)

av _ _ M, ) r— Y(1 + 68V7)
df"(m+1+wW*'Va+wm ’ ®)

where V and Y are the phase-plane variables.

A discussion of the solutions of the key equation (6) in its general form will be
temporarily postponed, and a special case where M, = M, = 0 will be considered, for
in this case a solution in closed form can be obtained.

2. An explicit solution for the special case, M, = M, = 0.

When M, = M, = 0, note that Eq. (6) takes the form,

vdv rdY __Yady @
1468V (14 38Y)(1 468V 1+ 38Y°

Equation (7) does not appear to be integrable because the first term on the right-
hand side of the equation is a function of both V and Y. However, by introducing a
new function ¢ and rearranging the equation, the explicit solution of Eq. (7) may be
found.

Define

¥ aYy
o) = 12 |, T T 3T + 667 ®

Also, from Eq. (7),

v 12v dV Y 128Y dY
Wiresv T ) T3y ©)

where Y, and V, are the initial values of ¥ and V respectively. Equation (9) is readily
integrable and

¢(Y) =

14 68V° (1 4 38Y%)"
1 4 68V (1 + 38Y5)°

Let ¢, be the initial value of ¢. Using Eq. (10) the value of ¢, mayzbe determined; in fact
&(Y)ae(ymyy =¢o =Inl =0;

(V=V,)

oY) =In (10)

thus

s _ (14 68V 4 38Y7%)°
€ = Qz

’ (11)
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where

Q" = (1 + 68Vo)(1 + 38Y0)".
Combining Eq. (8) and Eq. (11), the variable V may be eliminated and
Y1 4 38Y7) dY

#(Y) = l2ﬂr 0’ (12)
Differentiating Eq. (12),
d (1 4+ 38Y°
ﬁ=l2ﬂre ( '52 BY") 13)
Now, the variables are separable and thus by integration
L
o] <12y ]
['H °
or
‘= 1+ (Y 4+ BYY) = (Yo + BV, (14)
Combining Eqs. (11) and (14), the solution of Eq. (7) may be obtained:
(1 + 68V°)(1 + 38Y")* = Q" + 126r[(Y + BY") — (Y, + BY3)]
or
2 — (Y 4+ 1.58Y") +2r(Y+ﬁY’)
vs @+ 387 19
where
8" = Yo + 1.58Y5 + V(1 4 38Y0)* — 2r(Y, + BYs) (16)

is a function of the starting conditions. Equation (15) together with Eq. (16) yields the
solution of the differential Eq. (7) in closed form.

3. Bounded and unbounded solutions for r = 0 when M, = M, = 0. Bounded
and unbounded solutions in the special case under consideration will be investigated.
For any real value of ¥ and any positive value of 8 it may be seen that (1 + 38Y*)* > 1
and from Eq. (11), setting r = 0, that

V< 8 — (Y* + 1.58Y"),
or
VP4 Y2 4 1587 < 87, 17)
where
8 = Yo + 1.58Y; + Vi(1 + 38Y5)".

Thus V and Y are bounded in the phase plane as shown in Eq. (17) where the left-
hand quantity has to be smaller than a positive real number S’.

However, for a negative value of 8 the situation may be quite different. A plot of
the solution of Eq. (7) on the phase-plane from Eq. (15) and Eq. (16) will demonstrate
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this. It is clear that the solution of Eq. (7) depends on the starting conditions in the
phase-plane. A numerical example where 8 is negative will illustrate this feature.
Assume

then

8 — ¥ 4+ 027

Vi = Tq oy

These phase plane trajectories are plotted in Fig. 5. At S* = 12.5, the value of | V | is
3.535 for every value of Y, except | Y | = 5.00. At | Y | = 5.00, V is indeterminate.
The system is bounded provided the initial point (Y, , V,) falls within the rectangular
box | Y| < 5,| V| < 3.535. An initial point falling outside the box gives rise to an
unbounded trajectory.

For example, if the starting conditions are given as

Yo = +4) VO = +4

we can see that the system is not bounded.

4. The effect of changing the parameter 8. The choice of any particular value
for B, for example 8 = =+ 4/300, in no way limits the generality of the treatment, for
the characteristic of the solution for any other value of 8 can be obtained by introducing
a scale factor, i.e., a transformation parameter may be used to make the coefficient 8
equal to == 4/300. More precisely, if this parameter is denoted by L, let Y = LZ, then
Eq. (5) may be written as

d’ s 4 25 dz =
(2 + BLZ°) + M. - (Z + BL'Z") + M-+ Z =T,

or
L+ + MLz + MY + 2=k, (18)
where
g=pL" and R = % (19)

Hence £ may be made equal to either 4+ 4/300 or —4/300 by a suitable scale factor
L? and R can be calculated correspondingly. The solution of Eq. (5) will be ¥ = LZ,
where Z is readily obtainable by comparing Eq. (18) with Eq. (5). These remarks apply
not only to the general equation, but also to the special equation arising when M, =
M, =0.

5. Bounded and unbounded solutions for r > 0 when M, = M, = 0. In Sec. 3 it
was shown that a solution would be bounded when » = 0 if the initial values (¥, , V,)
fell within a certain rectangle (see Fig. 5). When r s 0 this bounded region changes
shape. Indeed the bounded region for Eq. (7) with a negative nonlinearity has a horse-
shoe shape.
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F16. 5. Negative nonlinearity for 8 = —4/300 and r = 0.

To demonstrate this, Eq. (15) may be re-examined, keeping in mind that a bounded
value of V is required as 1 + 38Y? approaches zero. In this case the numerator of the
righthand side of Eq. (15) also approaches zero

8* — (Y + 1.58Y* + 2r(Y + BY®) — 0. (20)

This is the criterion for a boundary of the bounded region.
By substituting Y* = —1/38 — e into Eq. (20), we have

s l 4—', _L 1/3
S=-%%"3 ("35) te, @D

where ¢ and ¢, are all infinitesimals.
Since 8 is negative, 8’ may be defined as 8/ = — 8. Using this value, 8’, and the
value of S? from Eq. (16), Eq. (21) becomes

2 _ (1/68") — (4r/3)(1/38")'"* + 2r(Y, — B'Y:) — Yo + 1.58'Ys
Vo = (1 — 3/3’ Y:)z ] (22)

The above equation determines the bounded region for Eq. (7).
It is interesting to note that if Y3 = 1/38’, V3 is indeterminate. However, the value
of V§ can be found as Y3 — 1/38’ by differentiating the numerator and denominator

of Eq. (22) with respect to Y, ; in fact

. 2 2r— 687Y; — 2V, +68'Ys Y, —r
= Txr 7 = 7 . 23
e V0T T 20— 88 T(-68Y) 66T, @)
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If the solutions to Eqs. (22) and (23) are plotted for r = 0.1, 1.0, 2.0, 4.0 at 8 =
—pB’ = —4/300, the boundary is seen to be of U or horseshoe shape as shown in Fig. 6.

Fia. 6. Bounded regions for different r, 8 = —4/300.

At a particular value of r, the solution is bounded when any set of starting conditions
lay within the horseshoe region; otherwise it is unbounded. The phase plane diagram
for Eq. (15) is also given for » = 1.0; see Figs. 7 and 8.
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Fi6. 7. Negative nonlinearity for § = —4/300 and r = 1.0.
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F1e. 8. Positive nonlinearity for 8 = + 4/300 and r = 1.0.

6. The period and frequency when M, = M, = 0. The period of a bounded solu-
tion of Eq. (7) is in general an elliptic integral. This can be seen by rearranging Eq.
(15) in the form

- (1+ 387" dY ‘
[ 4= m—msrmm tarrimm (24)

If numerical values are assigned to the parameters, the integral of Eq. (24) may be
evaluated by referring to any standard text on elliptic integrals.
If r = 0, the general solution can be found by considering

%2 (Y +8Y)+ Y =0. (25)

Expressing ¢ in terms of Y, Eq. (25) may be written in the form

> (™ (1+438YHdY
j; dﬂ = j; [Sz — Y2 _ 1.5ﬁY‘]l/2, (26)

where
S* = Y; + 1.58Y; + V(1 + 38Y5)".

The solution of Eq. (26) is a combined elliptic integral of the first and second kind. If
B is negative, then the quarter period will be

p= (% - B)kw + Brw, @)
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wheic

- 1 - [1 - GB'S"]”' _ [Y.’. _ Sz]:/z

Y- - 3ﬂl ’ k _, 82 ) (28)
Y. being the maximum value of Y at V = 0, if bounded and g’ = —pB. K denotes the
.complete elliptical integral of the first kind. E denotes the complete elliptical integral
of the second kind. The general solution of Eq. (26) will be in the form

o = (% - e, + Ero,», (@9)
where
6 = sin™’ 7”. (30)
If B is positive, the quarter period will be
) 2 1/2
p=+[AL) - 1] Ew - m0, 31)
where _
2 —l+[l+6ﬂS’]V’ _[S’— Y,:]"’
Y- = 33 ’ k= 232 — Y.’. ’ (32)

Y .. being the maximum value of Y at V = 0. The general solution of Eq. (26) will be
in the form

¢ = [z(yi_)’ - 1]"2[23(’-2’- , k) — 2E(6, k) — 1((’5r , k) + F(o, k)], (33)

where
= cos”’ % (34
The frequency may be calculated for both negative and positive 8 as
x/ 2
W =
4

The frequencies for various values of Y, and for 8 = + 4/300 are plotted in Fig. 9.
It is interesting to compare Eq. (25) with the Duffing’s equation,

ng+X+)\X—0 (35)

where the period is an elliptic integral of the first kind only. If 8 and A are small, the
approximation A = — 8 = B’ may be used.

Therefore the negative nonlinearity of Eq. (25) corresponds to the positive non-
linearity of the Duffing’s equation, and vice versa. This can be seen as the positive
branch curves towards the lower frequencies just as the negative branch does for the
Duffing’s equation. However, the frequency will be entirely different as starting amph-
tude gets higher.
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2
L+ + 7=y

Y. = Max. Y,

5

AmpLiTupe Ym
0o

0

‘5 -6 7 -8 -9 1-0 P
FrReQUENCY W

Fi6. 9. Frequency amplitude response. ¢ denotes cut-off point at ¥, = 5.0.

For a very high amplitude the frequency slows down for a positive 8, while there
is no bounded solution for a negative A with a very large amplitude in the Duffing’s
equation. For a negative 8, the amplitude is restricted and not more than (1/38’)'7?,
while there is always a frequency for any positive A at high amplitude for Eq. (35).

7. Solution with damping terms. With all these details in mind for the character-
istic of solutions of Eq. (7) in the special case M, = M, = 0, let us turn now to the
characteristic of solutions of the general equation (6). Note first of all that the slopes
of trajectories in the phase plane, as specified by Eq. (7), must be decreased by an
amount M, + [M,/(1 + 38Y?)] if the slope of the trajectories is to be that specified by
Eq. (6). In other words, when M, and M, are not zero, damping occurs and the slopes
in the phase plane must be adjusted accordingly. Conceivably, then, one would begin
with a solution of Eq. (7), sketch in a number of isoclines (i.e.,, a number of tangent
line elements); adjust the slopes and draw new isoclines for Eq. (6), and then sketch
in the trajectories for Eq. (6) and have a picture of the performance in the large for the
general case.

For the general case, however, it was more convenient to use an analog computer
which sketched the trajectories for the following cases:
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B=—zs, =120

M, =0.2, M, =0 in Fig. 10

M,=1.0,M,=0 inFig 1l

M,=0, M,=0.2in Fig. 12

M, =0, M,=1.0inFig. 13
Note that if 8 > 0, the quantity M, + [M,/(1 + 38Y?)] representing the change in
slope is always positive and the effect will be the creation of inward spirals toward the
value r. If 8 < 0, the change in slope is also positive for bounded solutions since the

quantity (1 + 3/3Y’) is always positive for bounded solutions without damping. More-
over, (1 + 38Y%) < .0 is not possible in a physical situation.

J

-5

;-3\((

ﬁ

F1a. 10. Computer solution, nonlinear capacity, for 8 = —4/300, r = 2.0, M; = 0.2, and M, = 0.

8. Bounded solution when M, > 0 and M, = 0. It can be shown from Figs. 12 and
13 that the higher the value of M,, the larger the bounded region. This bounded region
for any particular value of M, may be obtained by numerical integration of Eq. (6)
provided that the initial values of ¥ and V are known. It is logical to consider the upper
right corner of the bounded region in Fig. 6 as a point through the integral curve. For
any given value of r this point is determined by Eq. (23) as shown in the following
example, wherer = 2, Y, = 5.0,and V, = 2.7387.
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Fi6. 11. Computer solution, nonlinear capacity, for 8 = —4/300, r = 2.0, M; = 1.0 and M, = 0.
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F16. 12. Computer solution, nonlinear capacity, for 8 = —4/300, r = 2.0, M; = 0 and M, = 0.2.
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Fia. 13. Computer solution, nonlinear capacity, for 8 = —4/300, r = 2.0, M, = 0 and M, = 1.0.

A closer examination of Fig. 6 and Eq. (23) indicates that this corner point obviously
has two distinct slopes—one being infinite, the other being finite, depending upon the
direction of approach to the point. To determine the finite slope Eq. (6) is rewritten in
the following form:

2
lim Yoy lim YAV

1eaarie0 BY 1+agrim0 V(L + 38Y7)

By denoting the limit values of ¥V and Y as V, and Y respectively, it can be shown that

(iK

dY) = —(1 + 68V)(188V.Y)™" — M./3. (36)

The limiting value of the second derivative of V with respect to ¥ can also be expressed as
2
—(%) -V (‘"’) + (1257 + 0.50M, V" ‘)( ) +02BMY . (37)

For the same example with r = 2 and M, = 1.0, one obtains

av &'V -
( dY) —.21186, <ﬁ§)¢ = .0251.
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To start the integral curve the Taylor’s expansion with three terms is adequate.
_ ﬂ’) Ly (d_l) ..

where h is the increment of Y. The mth approximation of f may be defined as

Ya(l + 68V.)
(1 + 38Y7)

av r —
v = (YY) = =M, + v (38)

The above formulae together with the following Simpson’s rule constitutes the
method of successive approximation in numerical integration.

Vala+ 20 = V@ + 5 @) + 47 + B) + furia + 28]

TABLE 1
Bounded region with damping term My for r = 2, My = 1.0, M, = 0
Y 12 dv/dy Y v dav/dYy
5.0 2.7387 —.2116 -5.0 —4.1833 —.4130
4.8 2.7815 —.2166 —4.8 —4.2671 —.4254
4.6  2.8253 ~.2216 —4.6 —4.3535 —.43717
4.4 2.8702 —.2283 —4.4 —4.4425 —.4542
4.2 2.9165 —.2336 —4.2 —4.5350 —.4680
4.0 2.9637 —.2401 —4.0 —4.630 —.484
3.6 3.063 —.253 -3.6 —4.830 —.519
3.2 3.167 —.269 -3.2 —5.045 —.558
2.8 3.278 —' 286 -2.8 -5.2717 —.603
2.4 3.396 —.306 —-2.4 —5.528 —.655
1.6 3.662 —.356 -1.6 —-6.102 -.787
0.8 3.972 —.429 -0.8 —6.802 —.976
0 4.359 —.541 0 —~7.689 —1.260
—0.8  4.857 —-.727 0.8 —8.865 —-1.721
-1.6 5.565 —-1.073 1.6 —10.540 —2.545
-2.4 6.677 —1.809

The same technique can be applied to the lower left corner of the bounded region
in Fig. 13. The results are listed in Table 1 and plotted in Fig. 14. This is to say that
two integral curves determine this bounded region.

On the other hand, for M, = 0.2 and M, = O there exists only one integral curve.
It is sufficient to determine the bounded region by this simple curve alone.

9. The general bounded solutions. The value of M, (1 + 38Y*)~ approaches
infinity as (1 4+ 38Y?) becomes zero. However, the corner point with two distinct slopes
shifts to a new position by letting

""Yc(l + 6ﬂVf) - MV, +r= 0’
from which is obtained

_ M, ( M, )’ , — Yc]l/2
Ve = “1ggv, i[ 1287.) T gy, | - (39
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F1a. 14. General bounded regions for 8 = —4/300 and r = 2.0.

The limiting value of the finite slope and second derivatives are also obtained as

(Z’TK) = —(1 + 68V: + 68V.Y.M)188V.Y, + M), (40)

v\ _ [ d_'z)' . (9) ]
-—(de)c = [V, (dY . + (1.25Y;" + 0.50M, V™) ar/. + 0.25M.,Y; (41)

° [1 + Ml/wYeVel-l'

The same method is used in numerical integration. The results are plotted in Fig.
14 forr = 2, M, = 1.0, and M, = 0. Figure 14 indicates that the bounded region with
M, = 1.0 and M, = 0 is bigger than that with M, = 1.0 and M, = 0. Thus it can be
concluded that the M, term yields more weight in damping than the M, term. For
the same type of damping, the lower the value of the M, or the M, term, the smaller
the bounded region. This can be shown by comparing Figs. 10 and 11, or Figs. 12 and 13.

For M, = 0 and M, being finite, there are always some unbounded solutions of the
differential equation. This is also true for M, = 0 and M, being finite, except the value
of V. being higher.
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10. Further physical applications. An electric circuit with linear resistance and

capacitance in series with a coil having inserted magnetic material can serve as a good
example for illustrating more explicitly the results in physical terms. The coil has N

«Q

1 SATURATION

E& Eo /ﬁ
J ey A q

«©)
1
5
4
3
2
)
°~ | 2 3 4 5

Fra. 15. Nonlinear circuit: a) saturation, b) circuit elements, c) E denotes V(1 4+ 38Y*) as1 + 38Y2 — 0

turns with a magnetic flux ¢, thus the emf across the terminals of the coil as shown in
Fig. 15(a) is
d
e = I (N¢).

The differential equation can be written as
a9 g U, 2 g, 42)

To solve the above equation it is necessary to determine the relation between
¢ and q. If the flux density is B and the magnetising force is H, the relation between B
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and H before saturation may be approximated by
B = K(H — oH), 43)
where

K = constant, « = nonlinear parameter.

Let u be the incremental permeability of the material, then by differentiating Eq.
(43) '

If H is small, u is approximately equal to K as its limiting value. The flux density
is saturated at

dB

i = u(l — 3aH") = 0.
Thus the B — H relation can be defined only within the region
1 —3aH® >0,
or
H® < 1/3a. (44)
Substituting the value of H = Ni1™' and B = ¢4™".
¢ = 87'NG@ — ), (45)

where A is the cross section area of the material, 1 the length of the magnetic circuit,
i the current, S = 1K 'A™" the incremental reluctance, and ¥ = aN*1* a nonlinear
parameter.

Thus,

o= S WNe) = LE G — ), (46)

where L = S™'N* = inductance for the linear portion.
By substituting e, in Eq. (42), the differential equation becomes

LG vy +Ri+ =K. (7
The differential of the above equation will yield,
& pdi i dE,
LipG—v)+Rog+ - =25 (48)

For a step change of E, dE,/dt = 0 it can be seen that this is reduced to

d .. 3 -2/ G .
26— ) + RLTTCT) = +14 =0, (49)
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where
g = (LC)-IMt,

or
L+ +mLry-o (50)

wherei = IY,8 = —yI* = —4/300, M, = RL™"/*C"”*, and I is a reference current.
For a control device the system sometimes follows a ramp type signal defined by

Eo = Tt, (51)

‘where 7 is a constant.
The system will have a differential equation

d =5 (z - ) + (RL'”’C”’) 7 SR (52

with the starting conditions at ¢ = 0, ¢ = 1, , di/dt = 0. Equation (52) can be expressed
in nondimensional form as

d 3 aY
S+ + M+ Y =, (53)

wherer = 7l 'ato =0,Y = Y, = 4,7}, dY/do = 0.

By knowing the values of L, R, C, v, 7 and %, it is possible to compute the parameters
L, M, ,rand Y, with the fixed value of 8 = —4/300. To determine whether the solution
is bounded it is a simple matter to examine the starting conditions in the phase plane
curves for the above nondimensional parameters.

The definition of boundedness as given in previous discussions is entirely mathe-
matical. The unbounded solution was interpreted as the value of ¥V not bounded. How-
ever, close examination of Eq. (15) indicates that the product of V and (1 + 38Y?) is
bounded. This can be written as

V(1 + 38Y%) = [S* — (Y* + 1.58Y") + 2r(Y + BY®)]'. (54)

The curves in Fig. (15) give the values of V(1 + 38Y?) as (1 + 38Y") approaches
zero. It can be proved that the damping terms M, and M, do not affect these values.
Equation (6) may be rearranged as

. r— Y1 + 68V?
4 (¥ + 8Y") = V(U +36Y") = ety e 3BT

As (1 + 38Y?) approaches zero, V* and dV/dY are of higher order than (1 + 38Y?%) .
The importance of introducing the above analysis is that the voltage e, is always
finite at the saturation flux. This is because ¢, can be expressed in the form of Eq. (55).
Physically the rate of change of Y, (i.e., V), rises very rapidly as Y approaches (1—1/38)"?,
but the value of Y is only defined within this region.
To carry the physical problem to a new region, the final condition of the nonlinear
differential equation is of interest.

(55)

g = at, - Ri, — &, (56)
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where 1, and e, are final values of 1 and e, respectively, and ¢, is the time duration for the
current ¢ becoming #, . The new region has a horizontal line on the B vs. H curve after
the flux is saturated, ¢ being constant. It is therefore concluded that the value of ¢,
suddenly drops to zero outside the nonlinear region. The system will then become a
linear RC circuit with the same ramp input

3‘11+§=f¢. | 7

The starting conditions of this linear differential equation are the same as the final
conditions of the nonlinear differential equation. '

11. Conclusions. The solution of the system of differential equations (3a) and (3b)
can be conveniently represented in the Y V-phase plane and various sets of graphs made
to show the effect of varying.the parameters 8, r, M, and M,. For a positive 8 the system
is always bounded and the frequency tends to be slower than a corresponding linear
case. For a negative 8 with no damping the system is bounded within a horseshoe region
and the frequency tends to be faster. If the system is bounded without damping, it is
always bounded with damping. The effect will be a spiraling towards the value r in the
phase plane. '

In a physical system an unbounded solution may be re-defined by extending to a
new region beyond its boundary. The analysis can be applied to liquid level controlled
systems or circuits with flux saturation.



