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ON THE INTEGRATION OF NON-LINEAR PARABOLIC EQUATIONS
BY IMPLICIT DIFFERENCE METHODS*

BY
MILTON E. ROSE

Office of Naval Research,! Washington, D. C.

Abstract. The object of this paper is to investigate how solutions of mixed initial-
boundary value problems for a certain class of non-linear parabolic equations may be
obtained by solving suitable implicit difference equations on a rectangular lattice and
taking the limit of such solutions as the mesh of the lattice tends to zero.

We consider the non-linear’ parabolic differential equation

9" ou du
a7 = F(x, tu s Ft) (1)
in the strip0 < ¢t < T,0 < z < L, with the initial condition
—B’@yu(z, 0) = fo(z) (1a)
and the boundary conditions
1 au 1
2 S2(0, 1) — B0, ) = £1(1),
(1b)
d
—a(t) s uL, §) — BWuL, § = £,
assuming that the solution u(z, ¢) is unique and exists with suitable regularity properties
in the strip.

Introducing a family of rectangular lattices «, with mesh (k, k) and non-negative
weights «, , w, , We associate with (1) a family of implicit difference equations

0V, t) + 0.V, t — k)
= Flz, t,u(x, 1), s, Vaulz, ) + 0. Vaulz, t — k), Vaulz, )]

@

with corresponding difference equations approximating (1a) and (1b) [see (1.1)].

In the first part of this paper we prove the pointwise convergence, as we let b, k — 0
in such a way that k/A® = X is a fixed number, of the solutions u*(z, t) of the difference
equations (2) to u(z, t). We obtain estimates of the degree of convergence by methods
suggested by arguments of Gévrey [7] and Laasonen [8] for linear parabolic differential
equations and related to [4], [5], [6] for solving elliptic equations using a maximum
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*For higher space dimensions our analysis would carry over with (1) replaced by

Vi =F, 2y, - %%, Uz, Uy, +00).
We will retain the form of our arguments suitable for extentions to higher dimensions.
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principle. Our proof of convergence imposes a restriction on the value of A [see (2.3)]
which is stronger than the von Neumann criterion for linear equations.

An iteration method is then discussed for solving the implicit difference equations
(2); a convergence proof is given which provides both an existence theorem for the
solution of (2) for a fixed value of & and estimates of the error at any stage of the iterations.

1. Statement of the problem. Consider the non-linear parabolic operator

=28 p{n1,6,%,%)
L[¢]=ax2_Fx}t’¢aax)at'

F(z, t, z, p, q) denotes a fixed continuous function of its variables for (z, £) in a region
R in the (z, ¢)-plane and for all z, p, g. We assume that the partial derivative F, , F, , F,
exist, are continuous, and satisfy the inequalities

0<a"<F, <A< =,
|F,| £B< =,
0<"<F,<L<C< =,

where a°, ¢’, A, B, and C are fixed constants.

Let R = R(T) be a domain in R bounded by the coordinate lines z = 0, { = 0 and
the linesz = L, t = T, the closure of R will be denoted by R’. The set composed of the
segments B;(0 < 2 < L,t =0),B,(z = 0,0 <t <T)and B,(x = L,0 < ¢t < T) will
be denoted by B = B(T) and called the boundary of R'.

We define boundary operators A, , 4, , A; by

Aole) = —B°(z)e(z,0) onB,,

Alel = a'(t) 2 ¢(0, §) — B(2)p(0, ) on B,

Balo] = —a(t) 3= o(L, ) — F(Dp(L, ) on By ;

here 8°, 8" , B° are continuous positive functions, ', o’ are continuous non-negative
functions on By , B, , B, . Let fo , f,, f. be fixed functions defined on B, , B, , B, re-
spectively.

A mixed initial-boundary value problem ® may be formulated as follows: for fixed
T, determine a function u(z, f) defined in R(T) with certain regularity properties satis-
fying the equation

Liu]=0 inR
and the initial and boundary conditions
A.[’u] = f.' on B" ) 1= 0, 1, 2.

We will assume it to be known that this problem has at most one solution which exists
with suitable regularity properties’ under appropriate regularity conditions on the
operators L, A and on the initial and boundary data.

3Specifically, we assume Uszzz , Uzze , % and lower order mixed partial derivatives exist and are
continuous in R.
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Before describing a method for approximating the solution of problem @ by differences
it will be convenient to introduce certain notations. Let R, be a rectangular lattice
covering R’ given by lines

z = mh, m=20,1,--- , M,
t = nk, n=20,1,---,N,

where h = L/M, k = T/N. A net point P with coordinates mh, nk will by denoted by
P,,.. or, simply, (m, n). Let A, denote the set of points with coordinates (m, n) for
0<m < Mandlet A, = A, + (0, n) + (M, n). A point of the set

N
Rk.k = E A,

n=1
will be called an interior point of R, ., . A point of the set B, . = R} . — R, .is a boundary
point of R} . Also, if w is a function defined on R}, we will write w,., for w(P,.,).

Furthermore, when R; ; is representative of a sequence of lattices obtained by letting
h, k approach zero in such a way that the ratio

k
h1—-)\

is fixed we write R;,'l‘ = Rh , Bh.,, = Bh ) ete.
Next, let

Lh[(om.n] = wlv:¢m.n+w2v:¢m,n—l - F[xn ) tn ,‘Pn.n , wlv:‘w’n,n + wzv:‘Pm.n—l ] vt¢m.n]y
where

2

1
2Pmn = ? (¢m+l.n + Pm—-1,n — 2¢m.»))
Vetmn = o (P — 1.1
:¢n.n - 2h ¢m+l.n ¢m—1.n)) ( . )

1
vt(’m.n = E (¢n.n - ?m.u—l)‘
Here w, > 0, w, > 0 and w, + w, = 1. Also, let

Ah.o[%».o] = —ﬁtgfom.o ’ 0 _<.. m S M)

1
"Analpo.n] = %‘” (@10 — Po.0) — B.'.tpo.,. , 0<n<N,

Ah.2[¢ﬂ|.n] = % (¢a-l.u - ¢n.u) - B:‘Pm.n .

The mixed initial-boundary value problem ®, consists in finding a function »* defined
on R, which satisfies the equation

L] =0 inR, (1.2
and the initial and boundary conditions

Al = fi onB,,, (1.3)
where f! is a given function on B, .
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In Sec. 4 we describe an effective procedure for computing «* and obtain an existence
and uniqueness theorem for problem @, . In the next sections we derive sufficient con-
ditions for solutions of ®, to approximate the solution of ® uniformly in R’.

2. Estimates for linear difference operators. It will be sufficient to derive estimates
for linear operators of the form

Xh[¢m.n] = wlvz¢m.n + sz:(Dm.n-n - am.nvl¢m.n (2.1)

- bm,n[wlvx¢m.n + wzvz¢m.n—l] = Cm,nPm.n
where

0<a"<ann<A4,|bna| <B,0<c"<Cnn<C.
We assume h is so small, say h < ko, that

Bh < Bh, < 29,
where 0 < 0 < 1. Also, let A = k/R%.
Lemma 1. Let ¢ be defined on R; with
and Xh[¢] >0 in R, (2.2)
Avilel] 20 onB,,, 1=0,1,2.
Then, if

aO
W A S —é_ ) (2.3)

we have ¢ < 0in R} .

_ Proof. Let Ri, Bi.: denote the subsets of R, , B, .. respectively with points having
¢ coordinates less than or equal to ¢, . Let M[p] = max; maxz, , ¢, 7 = 0, 1, 2. We first
show that v

maxg, ¢ < Mi[e]. (2.4)

We proceed by induction and suppose that (2.4) is true for Ry and B;; ,1 < » < N,
i =0, 1, 2 and that there exists at least one point, say P,, .., , of A,,, for which ¢,, .., =
S.> M;.'[¢]. From (2.1), (2.2) we obtain, since xile] > 0,

Cmon+1¥Pm, n+1 S 2m-#l.n(‘Pm+l.n+1 - ?m.w&-l) + 2m—l.n(¢m-l,n+l - ¢m.n+1)
+ I‘m+l.n¢m+1.n + Pm.u¢m.n + Pm—l.n¢m-1.n

- kcm.n+l¢m.n+l ’

where
h
2:mml,n = 0)1)\(1 :F bm.n+l'_)!
2
I‘m.n = (am.n+l - 2)\“02)’

rm-l.n = wz)\(l :F bm_,.+l‘g>.
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By assumption,

h|bman | £ Bh < 26,
8o that

2,,,-1',. > wl)\(l - 0) Z 0

and 2., + Zp-1.n» = 2\w, . From 2.3 we havealsoT,,, > 0,T,,,;,,, > 0and I,.,,, +
I‘n—l.n + rm.n = am.n+l > 0-

Suppose w, # 0. Then, by assumption, there exists at least one point P, .., of

Ap+q at which ¢,/ .. = S and either (¢p 41,041 — S) OF (@r'—1..41 — S) or both are less
than zero. If w, = 0,

mMax [@ms1.n ) Pmiin ) Pmr-1,] < My < 8.
In any case, therefore,
am'.u+1‘S < @i ni1°S — kcn'.nu‘s,

which is impossible. For n = 1, i.e., R, Bi.: (2.4) is obviously true and hence for
1<n<N.

We next show that Mj[p] < 0. Suppose in fact ¢ had a positive maximum at a point
Qof B,,; . If Q C B,., we would have

Aiole(@] = =B @@ = ¢(@ 2> 0,

which is a contradiction if ¢(Q) > 0, since 8°(Q) > 0. If Q C B,, or B, , and if Q'is
the h-neighbor of @ in R, , (2.4) shows that

(@) — #@) < o0.
In either case we would have

0 < o(Q = Aanl@] < —8"(Qp(@Q),

which is a contradiction if ¢(Q) > 0. Thus ¢(Q) < 0 for Q C B,:,7=0,1,2. This
establishes the lemma.

From this lemma and the fact that x, , A,,; are linear operators it follows that the
only solution of the homogeneous problem is ¢ = 0. The existence and uniqueness of a
solution of the non-homogeneous problem follows directly from this fact.

Lemma 2. If ¢, ¢ are arbitrary functions on R with

Xh[ﬁ’l] < —I Xh[¢2] I
and

Misle'l £ = Mile®l],  ©=0,1,2,
then
e’ | < ¢
The proof follows by letting ¢ = ¢*> — o' and applying Lemma 1.
3. Proof of convergence. If¢',¢” are arbitrary functions and if ¢ = ¢' — ¢* we have

Lil¢'] — Lile’] = xile),
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where x, is given by (2.1) with
a;,; = Fxi , 8 2,0 + waDiio1 . Qi.g)
and with b, ; = F, ¢;; = F, evaluated at the same values of the arguments. Here
2. = {riei;+ 1 — Tii)ﬁ’f.i})
P = (r Vbl + (1= 7 )W),
{Ti.ivt[ﬂa:.i] + - "'i.i)vt[‘P?.i”’

qi.i
WithO S Ti.i S 1.
Let v* = u* — u, where »*, u are solutions of @, , ® respectively. Then

x,.[vh] = '-L).[u]-
Now set

(ml 1) mq ’ m3 ’ my ’ ms) = mRa'x (l Uzzzz l) luzzz |: lutl I; qut ly qu:t |)

and put
_m Akmg
and
A, = wz(mz + Ams) + B;m‘
From

| Lalu] | = | Lafu] — L[u] |,
the usual Taylor expansion yields the estimate
| Lyfu] | < B*A(R) + kA, .
Similarly, if

o* = max max | o’ |, me = max max |, |,
: Bi(T) ] Bi(T)
we find
max I A;.'.'[u] - A.[u] I S ha*mg . (3.1)
L

To obtain estimates for »* we introduce a comparison function Q* defined on R’ for
which
0[] < _%
and
AlQ] £ -3

Explicit constructions of  are readily obtained following the construction in Bers [4].
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Clearly, @ > 0in R’. Let

Q' = max Q.
Ry

From (1.3), (3.1) we have
max | Ay i0"] | < (a*me)h + max max | f; — f4 .
§ i BuD
Let ¢ > 0 be chosen so that
e > 2 max [(A°Ai(h) + kA,), (e*meh + max [f=7D.
Then

xale] < —5 < —xb'l |

and

M@l < —S< - AB]), i=0,1,2.

2 —
Hence, from Lemma 2, we obtain
Ivh l < @,

which furnishes a uniform estimate for »*.
Assuming for the moment the existence of solutions u* of ®, we may restate our
results in the

Theorem. Let problem ® be approximated by problems @, in the sense that

max max | fy — ft | = P00 i a* =0,

[y Bi(T) O(hz) if a* = Q.
Then, under the conditions detailed above, in particular, if A, ¥ — 0 in such a way that
E _a
k - h2 S ﬂ ’ (3'2)

the solutions u* of ®, approximate the solution u of problem ® uniformly in R’(T); i.e.,
lu —u* | = a*O(h) + O(®) + Ok).

The condition on the mesh ratio A given here differs from the condition for stability
in the von Neumann sense for linear equations, where one would expect stability for
arbitrary A when w, < % (see [2], [3]). These facts raise the question whether our con-
dition (3.2) may be weakened even in the non-linear case.

R. Richtmyer has given® a convergence proof for the solution of the heat equation
u, = U, by implicit difference equations of the type described here in which the von
Neumann criterion is sufficient for his convergence arguments. From another viewpoint,
condition (3.2) was imposed in order to obtain a maximum principle; F. John has shown

5Seminar in Numerical Analysis, Institute of Math. Sciences, New York University, 1954.
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T1], at least for explicit difference methods, convergence without using assumptions of
positively weighted coefficients.

4. Construction of solutions of ®, by iterations. In this section we shall describe an
effective iteration method for calculating solutions of ®, and obtain, at the same time,
a constructive proof for the existence of solutions u* of @, .

- Let
GiinlZ, 51,530 = wi(fy + &2 — 22) + 0(Yisr; + Yicr; — 2Y0)
- th[x; ytisr s Z, 2h = (50— ) + E (Yin = Y‘._l'i)’.z__k_&i].

Let ¢° satisfy the initial conditions
Ah.o[‘PO] = ft’; on B,

and be otherwise given arbitrary on E; .
Let 0, be an ordering of the set A} . For p,,; C Af and, with

H:,i[Z; i fz;z*] =724+ 6G.(Z,5,8;Y.0)
for 6 > 0, set

n+1

Hi 1[(¢)s.i ) (‘P)--&-l i (1’).-! i ¢y-—l]y (4‘1)
where

(@)%er.i = #it1
if  + 1 precedes in the ordering 0; ; otherwise

(‘P):—x.f = Qra1.i -
At boundary points Q set

@) - Q. 42)

@ = gt

ﬁh—{-a

Q' being the interior h-neighbor of Q.
Let ¢o = ¢° on A, in (4.1). We shall show that

lim ¢,1 = ¢i1 .

n—o

With ¢, , considered as initial values on Af calculate ¢;,, from (4.1), (4. 2). Continuing
in this manner we will obtain a function ¢, ; defined in R, which, for P; ; C R, , satisfies

Gi.i+l(¢i.i+l y Pi+l,i41 ) Pi-1,i41 ;10.'.,') =0
with
Mol = ff omBi:, i=0,1,2,

i.e. ¢; ; is a solution, by construction, of @,.
Finally we shall prove that, given any ¢ > 0, and for N = T/k, there exist integers
Ny ,Mg, -+ , Ny depending on e such that

| eii — 3iloin'] | <oe (¢, 5 CRy,
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where the notation ¢}’; [¢; '] indicates the function obtained on A} after =, iterations
with “initial conditions oi72 on A, . (We will write ¢} .; for ¢F.; [¢;-1] where no con-

fusion is apt to arise.) This permits the effective computation of the solution numerically.
First of all, we have

(0?:','1 - ‘P';.i = _Bil_f *[(40)?5 - (‘P ] + [(¢)i+l.i - (So ?::.I
( 9z ) ( )
(aH‘) (@i-1.i — @31,

the asterisk indicating that the partial derivatives are evaluated at intermediate points

(4.3)

7:i(@)7ari + (1 — Tii)(¢):::.i ’ =-L01,
0<r; <1
At a boundary point Q@ (from 4.2)
¢Q — 9@ = ;5 0@ — @@L (44)
Let
m;* = max |t — et |
and .
pit = max |¢"(Q) — (@) |. (4.5)

(A’i-4j)

From (4.3) we have

oH; oH:. |*
st L)
< max [m,,p,]ma.x + as‘l + FTA (4.6)
Now
OHY ( 2 5 ,,)
% —-1—62wl+hF":+kF,,
OH:¥ _ ( h .)
ag_l—awll 2FD!
oH:Y _ ( h *)
a;,“‘s‘“‘1+2F"
Choose

h2 -1
8<<2w,+h2A+fB) .
Then, since by assumption 1 — (h/2) F, > 0, all these derivatives are non-negative and

3 , 3 2 n’
(52 +ont ar)(H DFr=1- a(h Ft+ 7 F";) > 0.
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Let

=1— 8h’(4 + k'B).
Then (4.6) yields

m}*' < p max |m}, ul].

From (4.4), however, we see that

[+ 3
W < ——=m; < m}

a4+ Bh
so that
m’;“ S Pm,; )
or
m;* < p'mj .
Thus
1n
" Red m
max | @77 — ol | < 1 -,-p : 4.7
Ay P

This implies the existence of a limit function ¢;; ,
¢ = lim ¢}, , i=1,2,---,N,
-
which is, by construction, a solution of @, . The proof that this solution is unique follows
directly.

Estimates similar to (4.7) hold for iterations based on a function w;., taken as
“initial values”’ on A}, . Writing ¢, ; = ¢;.; [¢;-1], Wwe have that

Iﬂ":i[wi-l] —eii | < lv?i[wi—ll — @ii[w;] l + l¢ei[wi-1] — @i; |

Also

ol = o0 = () Gt = o ')+(aali) ool = e
4 () sl = i
+(§) (rim = Gr5o) 4.9)
+ (ai’li ,) (Wis1,i-1 = @is1,i-1)

OH:;
+ (R wr s = e,

the derivatives being evaluated at some intermediate point.
Let

Ujlw;] = n:a,x l?i.i[w:‘-ll - Y. |
‘i
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and

Vi[wi—l] ma'x I Wi, i-1 = @i, i-1 I

'i-1

2
8(% F: - 2“’2);
- -1
(aY..ﬂ,, = a1 — 3 F3),

) - i)
(GY.;_,,,- = duw,| 1 +2F$ .

U;lw;-1] < pU;[w;1] + «Vi[w;_4],

Now

Q|
~<|m
Flll il
N—
*

I

Thus, from (4.8),

where
R’ . B’
k=7 A if w < % b,
= 4w, if >1 K b’
B “2Z2%
This may be written as
Uilwiw] < 17— V [w;-1].

Now, let w;,; = ¢;'; where n; is some integer. From (4.7),

Vilim'l < 77— V lei-l,
so that, with
i1

Wi= ma'x | 0%.ilein] — os.ilei'3*] |

we have
W < o"W5.
Thus, from (4.7), (4.9), (4.10) we obtain
| ekl ] = i | < Wi+ Ujlefis
<oV 4
We may assume V[pg] = 0. Let

- ko
V= omax a= o Vileinl

T Vikial i=12, -

247

4.9)

(4.10)

4.11)
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and assume n, , n, , --- , Ny are so large that

max |W;|<T,.
.

i=1,2,000,

Let
T = max [T , T.].
Then,
leiilein'l — @i | ST+ 6, 1<ji<N
and

|¢?.i — ¥ia I < PPM-
Hence, let ¢ > 0 be given. Let n; be determined, for example, such that

g Je .

' < SNT '’ j=1
jWith

ne e .

" < oNT
Then

nj ni—1 _G_ S —
(" + o) S o5 @ —1) <e

and I'p™ < e

[Vol. XIV, No. 3

This, then, furnishes a uniform approximation to the solution ¢, ;.in R, , i.e., to the

solution u* of @, .
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