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ON THE INTEGRATION OF NON-LINEAR PARABOLIC EQUATIONS
BY IMPLICIT DIFFERENCE METHODS*

BY
MILTON E. ROSE

Office of Naval Research,1 Washington, D. C.

Abstract. The object of this paper is to investigate how solutions of mixed initial-
boundary value problems for a certain class of non-linear parabolic equations may be
obtained by solving suitable implicit difference equations on a rectangular lattice and
taking the limit of such solutions as the mesh of the lattice tends to zero.

We consider the non-linear2 parabolic differential equation

dju
dx2

. du du\

in the strip 0<t<T,0<x<L, with the initial condition

-/3°(x)u(x, 0) = /0(x) (la)

and the boundary conditions

«(<) £ (0, t) - 0, t) = /,(*),
(lb)

-a\t)yxU{L, t) - mu{L, t) = f2(t),

assuming that the solution u(x, t) is unique and exists with suitable regularity properties
in the strip.

Introducing a family of rectangular lattices irh with mesh (h, k) and non-negative
weights co, , to2, we associate with (1) a family of implicit difference equations

<j)xVlu(x, t) + u2Vlu(x, t - k) ^

= F[x, t, u(x, t), ^VMx, t) + ^VMx, t — k), V,m(x, <)]

with corresponding difference equations approximating (la) and (lb) [see (1.1)].
In the first part of this paper we prove the pointwise convergence, as we let h, k —>■ 0

in such a way that k/h2 = X is a fixed number, of the solutions uh(x, t) of the difference
equations (2) to u(x, t). We obtain estimates of the degree of convergence by methods
suggested by arguments of Gevrey [7] and Laasonen [8] for linear parabolic differential
equations and related to [4], [5], [6] for solving elliptic equations using a maximum
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'This paper was written while the author was a member of the AEC Computing Facility, New York

University. The author wishes to thank Prof. E. Isaacson and Drs. E. Bromberg and R. Richtmyer for
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2For higher space dimensions our analysis would carry over with (1) replaced by
V*w - F(t, x,y, ••• ; u; ut, ux , uv ,

We will retain the form of our arguments suitable for extentions to higher dimensions.
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principle. Our proof of convergence imposes a restriction on the value of X [see (2.3)]
which is stronger than the von Neumann criterion for linear equations.

An iteration method is then discussed for solving the implicit difference equations
(2); a convergence proof is given which provides both an existence theorem for the
solution of (2) for a fixed value of h and estimates of the error at any stage of the iterations.

1. Statement of the problem. Consider the non-linear parabolic operator

F(x, t, z, p, q) denotes a fixed continuous function of its variables for (x, t) in a region
R in the (x, <)-plane and for all z, p, q. We assume that the partial derivative F, ,FV , F,
exist, are continuous, and satisfy the inequalities

0 < o° < < A < co,

| Fv | < B < oo ,

0 <c° < F. < C < oo,

where a", c°, A, B, and C are fixed constants.
Let R = R{T) be a domain in R bounded by the coordinate lines x = 0, t = 0 and

the lines x = L, t = T; the closure of R will be denoted by R'. The set composed of the
segments Bo(0 < x < L, t = 0), B^x = 0, 0 < t < T) and B2(x = L, 0 < t < T) will
be denoted by B - B(T) and called the boundary of R'.

We define boundary operators A0 , A, , A2 by

AoM = —P°(x)<f>(x, 0) on B0 ,

A,M = a\t) <p(0, t) — ?(M0, t) on B,

A.W = t) - fiML, t) onB2 ;

here /3°, /31 , /32 are continuous positive functions, a1, a are continuous non-negative
functions on B0 , Bt , B2 . Let f0 , fi , /2 be fixed functions defined on B0 , B^ , B2 re-
spectively.

A mixed initial-boundary value problem (P may be formulated as follows: for fixed
T, determine a function u(x, t) defined in R(T) with certain regularity properties satis-
fying the equation

L[u] = 0 in R

and the initial and boundary conditions

A,[w] = fi on B{ , i = 0,1,2.
We will assume it to be known that this problem has at most one solution which exists
with suitable regularity properties3 under appropriate regularity conditions on the
operators L, A and on the initial and boundary data.

'Specifically, we assume nm , uxx, , ult and lower order mixed partial derivatives exist and are
continuous in R.
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Before describing a method for approximating the solution of problem (P by differences
it will be convenient to introduce certain notations. Let Rl,k be a rectangular lattice
covering R' given by lines

x = mh, m = 0,1, • • • , M,

t — nk, n = 0, 1, • • • , N,

where h = L/M, k = T/N. A net point P with coordinates mh, nk will by denoted by
Pm,n or, simply, (m, n). Let A„ denote the set of points with coordinates (m, n) for
0 < m < M and let A^ = A„ + (0, n) + (M, n). A point of the set

N

Rh.t — A„
n— 1

will be called an interior point of Rkik. A point of the set Bh k = R'hk — Rkk is a boundary
point of R'h,k . Also, if w is a function defined on R'h,k we will write wm,n for w(Pm,„).
Furthermore, when R'k,t is representative of a sequence of lattices obtained by letting
h, k approach zero in such a way that the ratio

A_x
h2~

is fixed we write Rh,k = Rh, Bhtk = Bh, etc.
Next, let

-MPm.n] = 0)lV:<Pm,„ + U2V*<pm,„-l ~ F[x„ , tn ,<pm,n ,U\VX<P„,„ +

where

^xVm.n ^2 (^m+l,» ~f" Pm-l.n ^Pm,n)t

^xtpm.n 2^ (^m + l.n *Pm— l.n))

Here «! > 0, o>2 > 0 and w, + u>2 = 1. Also, let

A),,o[95m,o] = —PmVm.O , 0 < 171 < M,
1

Aji.lfo).,,] = y (Vl.n — <P0,n) ~ AWn , 0 < H < N,

a2
Aft,2 [^m,tt] — ^ (tPn—l ,n <Pn,n) @n*Pm,n •

The mixed initial-boundary value problem 6>h consists in finding a function uh defined
on Rk which satisfies the equation

Lk[uh] = 0 in R„ (1.2)

and the initial and boundary conditions

on Bh i , (1.3)

where /? is a given function on Bhti ,
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In Sec. 4 we describe an effective procedure for computing u* and obtain an existence
and uniqueness theorem for problem <Pk . In the next sections we derive sufficient con-
ditions for solutions of 9h to approximate the solution of (P uniformly in R'.

2. Estimates for linear difference operators. It will be sufficient to derive estimates
for linear operators of the form

+ w2V*«>m,n-i — a«,nV ,<pm,n

~~~ Vx*Pm,n I C*?2 j

where

0 < a0 < am,n < A, | | < B, 0 < c° < c„,„ < C.

We assume h is so small, say h < h0, that

Bh < Bh0 < 26,

where 0 < 8 < 1. Also, let X = k/h

Lemma 1. Let <p be defined on R'h with

and X,M>0 in Rk
A*.<H > o on Bh,i , i = 0, 1, 2.

Then, if

(2.1)

(2.2)

co. X < f , (2.3)
we have <p < 0 in R'h .

Proof. Let R'h , Bl,{ denote the subsets of Rh , Bk i respectively with points having
t coordinates less than or equal to t, . Let M*h[<p\ = max, maxB[„. <p, i = 0, 1, 2. We first
show that

maxj, <p < MNh[<p\. (2.4)

We proceed by induction and suppose that (2.4) is true for R'h and B'hti , 1 < v < N,
i = 0, 1, 2 and that there exists at least one point, say Pm,n+\, of A„+1 for which <pm,n+1 =
S,> MT2[v\. From (2.1), (2.2) we obtain, since xj<p] > 0,

&m ,n + ,n+1 — ^ + 1 +1 ,n+1 *Pm,n +1) 1 ^m—1 ,n(*Pm—1 ,n + l ^m,n+l)

i l^m +1 ,n*Pm+1 ,n I ^m,vfPm,n I fm — 1 ,n*Pm — 1 ,n

kCm >n + \*Pm,n +1 j

where

COiX^l ~F

I m,n 2XCO2) ,

«2X^1 ~F +
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By assumption,
h | bm,n+l | < Bh < 20,

so that
2.-1.. > «,X(1 - 6) > 0

and 2„+ll„ + S„-1>n = 2Xa)! . From 2.3 we have also rm.„ > 0, rm+1,„ > 0 and rm+1,n +

Suppose a*! 5^ 0. Then, by assumption, there exists at least one point P„.,„+1 of
An+1 at which 1 = S and either (ym<+1,„+i — S) or (^„'_lin+i — S) or both are less
than zero. If o>2 ̂ 0,

i
max fo?m' + 1,n , Vm'.ft , ¥>m'-l,n] < Ml < S.

In any case, therefore,

^mf ,n+l@/m',n+l'$ ^Cm',n+l'^)

which is impossible. For n = 1, i.e., Rl.i Blhl (2.4) is obviously true and hence for
1 < n < N.

We next show that Ml[<p\ < 0. Suppose in fact <p had a positive maximum at a point
Q of Bh-i .If Q C. Bh% o we would have

Ak.o[*(Q)] = -PXQMQ) = <t(Q) > 0,
which is a contradiction if <p{Q) > 0, since /3°(Q) > 0. If Q C Bhtl or B^2 and if Q1 is
the /i-neighbor of Q in Rh , (2.4) shows that

M) ~ <p(Q) < o.
In either case we would have

0 < a(Q) = A4.a.„[*(Q)] < -0(1'2\QMQ),
which is a contradiction if <p(Q) > 0. Thus <p(Q) < 0 for Q C Bh i , i = 0, 1, 2. This
establishes the lemma.

From this lemma and the fact that Xh , Ah,{ are linear operators it follows that the
only solution of the homogeneous problem is <p = 0. The existence and uniqueness of a
solution of the non-homogeneous problem follows directly from this fact.

Lemma 2. If ip1, <p2 are arbitrary functions on R'h with

xjp1] < - | Xklp2] I
and

A*„V] < -| A*„V] |, i = 0,1,2,
then

I 2 I 1I <P I < <P •
The proof follows by letting <p = — <p and applying Lemma 1.

3. Proof of convergence. If <pl, </ are arbitrary functions and if ip = <pl — <p2, we have

Lh[v] — = xA<p],
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where Xh is given by (2.1) with

®»if F > tj ,Zi,i ,UhPi.i "4" C«>2Pi,/-l , Qi.j)

and with b< { = Fvcu — F, evaluated at the same values of the arguments. Here

*i.i = {-Ti.iVi.i + (1 - 1

Pi.i = + (1 - t,.„)V,[„?„•]},

Qi.i = {Ti./V,[<Pf.,] + (1 - r,.,)V,M.,]},
with 0 < T;.,- < 1.

Let vh — u — u, where u , u are solutions of , (P respectively. Then

x>[vk] = -LM-

Now set

(wi! ,m2 ,m3 ,mt , m5) = max (| uxxxx |, | uztx |, | utl |, | ux, |, | uXIt |)

and put

a en m> _L Ahm3AiW = 7^~ +12 ' 3
and

A2 = co 2(m2 + Arris) +

From

| Lh[u] | = | Lh[u) - L[u] |,

the usual Taylor expansion yields the estimate

| Lk[u] | < h'A^h) + kA2 .

Similarly, if

a* = max max | a \, rn6 = max max | uxx |,
• Bi(T) i BiiT)

we find

max | AAii[u] — A([w] | < ha*ma . (3.1)

To obtain estimates for vh we introduce a comparison function Q4 defined on R' for

which

x*[ft] < —§

and

  Ajfl] <
'Explicit constructions of S2 are readily obtained following the construction in Bers [4].



1956] INTEGRATION OF NON-LINEAR PARABOLIC EQUATIONS 243

Clearly, 12 > 0 in R'. Let

0' = max U.
Rr

From (1.3), (3.1) we have

max | A* ,,•[»*] | < (a*m6)h + max max | /,■ — fk( |.
•' • BiiT)

Let « > 0 be chosen so that

Then

and

e > 2 max [(h2Ai(h) + kA2), (a*m6h + max | / — /* |).
B (T)

A».i[«0] < -| < -| Aj.ilv*] |, i = 0, 1, 2.

Hence, from Lemma 2, we obtain

v" | < (W,

which furnishes a uniform estimate for vh.
Assuming for the moment the existence of solutions uh of (Pk we may restate our

results in the

Theorem. Let problem <P be approximated by problems (Pk in the sense that

, , ,k , \a*0(h) if a* 9^ 0,max max [/,• — /< | = ^ '
4 BiiT) I OQi2) if a* = 0.

Then, under the conditions detailed above, in particular, if h, k —» 0 in such a way that

X = P - 2^ ' (3'2)

the solutions uh of (Ph approximate the solution u of problem (P uniformly in R'(T); i.e.,

| u - uh | = a*OQi) + 0(h2) + 0(k).

The condition on the mesh ratio X given here differs from the condition for stability
in the von Neumann sense for linear equations, where one would expect stability for
arbitrary X when w2 < J (see [2], [3]). These facts raise the question whether our con-
dition (3.2) may be weakened even in the non-linear case.

R. Richtmyer has given5 a convergence proof for the solution of the heat equation
ut = utx by implicit difference equations of the type described here in which the von
Neumann criterion is sufficient for his convergence arguments. From another viewpoint,
condition (3.2) was imposed in order to obtain a maximum principle; F. John has shown

'Seminar in Numerical Analysis, Institute of Math. Sciences, New York University, 1954.
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fl], at least for explicit difference methods, convergence without using assumptions of
positively weighted coefficients.

4. Construction of solutions of 6\ by iterations. In this section we shall describe an
effective iteration method for calculating solutions of (?k and obtain, at the same time,
sa constructive proof for the existence of solutions uh of (9h .

Let

Gifi , f* ; yi.,) = w,(f, + i"2 — 2Z) + + Yi-i.i — 2Ya)

- , <;+1 , Z, fh (U ~ r.) + H (Ym., - Yi-u), z

Let (p° satisfy the initial conditions

] = fo on B0

and be otherwise given arbitrary on R!> .
Let 0, be an ordering of the set A- . For pitI- C A{ and, with

HlAZ; r1, t2; Z*] = z+ SGUZ, r., r.; f,.,)
for 6 > 0, set

vT.l = . (*):«./, WJ-i.i; *>>-»]> (4-1)
where

/ \» n+1
= V.-i.l

if i + 1 precedes in the ordering 0, ; otherwise

Gf>)<-i.< = •
At boundary points Q set

(4-2)

Q' being the interior /i-neighbor of Q.
Let <po = <pa on A0 in (4.1). We shall show that

lim <p*,i —* tpi,i .
n-*a>

With <piA considered as initial values on Al calculate <piti from (4.1), (4.2). Continuing
in this manner we will obtain a function ,, defined in Rh which, for Piwj C Rk , satisfies

+ + l , 1Pi + l,i + l ) + l ) Vi.i) = 0

with

= /i onBh-i , i — 0, 1, 2,

i.e. <Pi,j is a solution, by construction, of <PA.
Finally we shall prove that, given any e > 0, and for N = T/k, there exist integers

Ui , n2 , • • ■ , nN depending on e such that

I Vi.i ~ | < (h J) C«»,
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where the notation ipl'.i WV-'x] indicates the function obtained on A{ after n, iterations
with "initial conditions" <pV,7-1 on A-_a. (We will write tpl,,• for [^,_,] where no con-
fusion is apt to arise.) This permits the effective computation of the solution numerically.

First of all, we have

<pV - = (^7)*[(*)".- - w:"] + - WEi.ii ^ ^

+
the asterisk indicating that the partial derivatives are evaluated at intermediate points

+ (i - r„)(*);;!.,, ' = -1' °' h
o < T„ < l.

At a boundary point Q (from 4.2)

<pn+\Q) - <pn(Q) = [(*)"«?') - (4.4)

Let

and

m"+1 = max | <p"*/ — tp",,-
A i

M;+1= max | <pn+\Q) - <p\Q) |. (4.5)
CA'i-A/)

From (4.3) we have

m"+1 < max [m" , ju*] max
A/

dH'j
dz

*
+ dHl- *

+ dH*, '}•

Now

dHl*
dz

dH'f

'* / h2 \* = 1 - 5^2ci>i + h2F* +JF*,),

Hi

#=4+14
Choose

5 <

(4.6)

(2«i + h2 A + B^j .

Then, since by assumption 1 — (h/2) Fv > 0, all these derivatives are non-negative and

(k + w, + 5e)<h: <>* - 1 - + f f';) * °-
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Let

P = I - bh\A + k~'B).
Then (4.6) yields

m"+1 < p max [m" , /i"].

From (4.4), however, we see that

n + 1 / &  n ^  n

so that

m"+I < pm" ,

or
m?1 < Pnm) .

Thus

max | - v'.< | < -r*-' (4-7)
A'j I — P

This implies the existence of a limit function <piti ,

<Pi.i ~ lim <pl,i , j = 1,2, ••• ,N,

which is, by construction, a solution of (PA. The proof that this solution is unique follows
directly.

Estimates similar to (4.7) hold for iterations based on a function wi^l taken as
"initial values" on A'_j. Writing [?>,■_J, we have that

I <f>"ij[Wj-1] — <Pii | < I 1] — Vii[Wj-1] I + I <Pii[Wi-1] — Va I-

Also

Vi.i[u>i-1] — <Pi.i = — v<.>) + (^7) ~ Vi+i.i)

+ (4.8)

+ (g^-)V-i.,-i - -0,
the derivatives being evaluated at some intermediate point.

Let

U,[Wi-i] = max | »3,.,[«,_!] - v\\#
A'j
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and

Now

Thus, from (4.8),

where

This may be written as

V,= max | — Pi,,--1
A'/-x

(ffj)* -

UjK_,] < pUAwi-i] + KF#[Wf_i],

fe2 . . h1 ,0
K = ~ic w2 ~ "fc"

. - 1 h2 , o
= 4w2 il 032 2 1c

UAWi-x] < (4-9)1 — p

Now, let Wij = ?>"!,■ where n,- is some integer. From (4.7),

so that, with

F,KiV] < VAvUhI — p

W" = max I ,[^7-1*] — <Pi.i[<pV-il] | (4.10)
a' /

we have

F?<PnTP|. (4.11)

Thus, from (4.7), (4.9), (4.10) we obtain

I vUfV-V] ~ va I <W1+ UAvl'-V]

< p"-W° + (1 J p)a-Pn'"'W-i] j — 1,2, ••• ,N.

We may assume Ffe>o] = 0. Let

= max (T^ ™<"l]
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and assume n, ,n2 , • • • , nN are so large that

max | W° | < r2 .
1—1,2, •••.x

Let

Then,

and

r = max [rj, r2].

vlAvV-x'] - <Pi., I < r(P" + p"'-*), l < j < N

I <pli - Vi.i I < rpn\
Hence, let e > 0 be given. Let n,- be determined, for example, such that

with

Then

p"' - 2NT ' i ~ 1

Pn° < *
2NT

r(pni + p"'-) < ^ (2j - 1) < e

and rPn° < e.
This, then, furnishes a uniform approximation to the solution *?,■,,- in Rh , i.e., to the
solution uh of (PA .
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