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—NOTES-
NOTE ON A NON-HOLONOMIC SYSTEM*

By O. BOTTEMA (Technische Hogeschool, Delft, Netherlands)

A mechanical system with the coordinates <?, , q2 , • • ■ qu is called non-holonomic if
there exist one or more non-integrable kinematical relations of the type

dq, + A2 dq2 + • • • + A„ dqn = 0, (1)

where A, is a function of <7, , q2 , • • • , qn . If the number of relations is m the system
has n — m degrees of freedom.

In every textbook on mechanics which deals with the matter examples of non-
holonomic systems are given. We always meet the sphere moving on a rough plane:
the conditions which express that the velocity of the point of contact is zero are non-
holonomic (n = 5, m = 2). A more simple and very attractive example has been given
by Carath^odory1 in a paper on the sleigh: a line-segment AB is moving on a horizontal
plane and one of its points C is subjected to the condition that its velocity has no com-
ponents perpendicular to AB(n = 3, m — 1). In all these cases the non-holonomic
constraint is due to friction.

An example of a non-holonomic system of another type seems the following. Consider
a (horizontal) disc D, which is able to rotate without friction about a vertical axis I
intersecting D in 0, and a particle P which moves without friction on the disc. If there
are no external forces acting on the system its moment of momentum about I is constant.
We add the condition that this constant is zero] the system is now seen to be a non-holonomic
one (n = 3, m = 1).

If OA is a fixed line on the disc, OX a fixed horizontal line in space, XOA = <p,
OP = r, AOP = \f/, then r, <p and are coordinates of the system. I being the moment of
inertia of D about the axis I, and m the mass of the particle P, the condition reads

(I + mr2) dtp + mr2 dip = 0. (2)

Obviously this relation is non-integrable. It can also be shown directly that there
cannot exist a relation between the three coordinates. Suppose that according to a force
acting between the particle and the disc, P describes a curve r(t), \p(f) on D, starting
from rest in A (r, , ipt) and moving to B{r2 , \p2). Then during this relative motion the
disc rotates about an angle

' - — TT%) dL

If B coincides with A this value is in general not zero: that means that the coordinate <p
is not determined by r and \p. We have a very simple case if mr2 can be neglected with
respect to /; then <p = —m /!; r2^' dt = —2mF, where F is the area enclosed by the
curve which P has described on the disc. It is therefore possible to move P in such a
way that to given values of r and \p an arbitrary value of <p belongs. Suppose that the
force acting between D and P depends only on r and \f/ and that moreover this field
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force is conservative, the potential function being mV(r, \p). Then the Lagrangian
function is

L = T — V = |(/ + mr2)<p'2 + mr2<p'rf/' + + hmr 2 ~ mV(r, \f).

The Lagrange equations of the second kind for <p, and r are respectively

{(/ + mr2)ip' + mr2\//'} = \(I + mr),

1 dV4r <p + 2r<p + 2r \f/ + rxf/ —- = Xr,r dy

<9 V
r — r<p 2 — 2r<f> \f/ — r\f/2 H—— — 0.

or

From the first of these equations it follows that the multiplier X is 0. <p' and <p" can
be eliminated and we have two equations for the relative motion r, \j/ of the particle P
on the disc. They are rather complicated. Of course we can take T + V = c instead of
one of them. If we have the case mentioned above, where mr2 may be neglected when
compared with I, the equations are

<p' = —-yr2\l/'t r" — r\p'2 + = 0, r2\j/'2 + r'2 — 2V = c.
1 or

This means that the relative motion is the same as it would be if the disc were fixed.
We give a simple example: V = k2/2(r2 — 2ar cos ip), the force on P being an attracting
force directed to the center C{r = a, \p = 0), and proportional to the distance PC. If
x = r cos ^ — a,y = r sin we have x" = —k2x,y" = —k2y,x = Ci cos kt + C2 sin kt,
y = C3 cos kt + Ct sin kt, where C, are constants of integration. Therefore

r2 = (C2 + Cl) cos2 kt + (Cl + CJ) sin2 kt + (C.C, + C3C<) sin 2kt

+ 2a(C1 cos kt + C2 sin kt) + a2,

C3 cos kt + Ct sin kt\p = arctan

rV =
Hence

Ci cos kt + C2 sin kt + a'

r2i' = ay' + (xy' - yx) = ay' + kiChCi — C2C3).

<P = (C3 cos kt + C< sin kt) - ~ (CtC4 - C2C3)t + C5

ON LINEAR INSTABILITY*
By AUREL WINTNER (The Johns Hopkins University)

1. Let the coefficient function of the linear differential equation

z" + f(t)x = 0 (1)
be real-valued and continuous for large positive t. Consider only those solutions x(t)
of (1) which are real-valued and distinct from the trivial solution (= 0). Then, since
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