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TENSORS ASSOCIATED WITH TIME-DEPENDENT STRESS*
BT

BARBARA A. COTTER AND R. S. RIVLIN
Brown University

Abstract. It is assumed that six functional relations exist between the components of
stress and their first m material time derivatives and the gradients of displacement,
velocity, acceleration, second acceleration, • • • , (n — l)th acceleration. It is shown
that these relations may then be expressed as relations between the components of
m + n + 2 symmetric tensors if n > to, and 2m + 2 symmetric tensors if m > n. Ex-
pressions for these tensors are obtained.

1. Introduction. It has been shown by Rivlin and Ericksen [1] f that if we assume
that the components of stress t{i , in a rectangular Cartesian coordinate system ,
at any point of a body of isotropic material undergoing deformation, are single-valued
functions of the gradients of displacement, velocity, acceleration, •••,(» — l)th accel-
eration in the coordinate system x{ at the point of the body considered, then the stress
components may be expressed as functions of the components of (n + 1) symmetric
tensors defined in terms of these gradients.

We describe the deformation by

Xi = x,(X; , t), (1.1)

where x{ denotes the position, at time t, in the coordinate system , of a material
particle which was located at Xt in the same coordinate system at some other instant
of time T. Let ViU, v\2>, t\<3), • • • , v\n) denote the components of velocity, acceleration,
second acceleration, • • • , (n — l)th acceleration at time t, in the coordinate system xt ,
of a material particle located at xt . Then, if we assume

(dx^ dvir dvT dCl)
lii\dX,' dxa ' dxa' ' dxa)' K ' '

it follows [1, Sec. 15] that /,,• may be expressed as single-valued functions of the com-
ponents Cu , AYi\r = 1, 2, • • • , n) of (n + 1) tensors defined by

r — dXi dXi A<u = 4- dtt;1'
" dXk dXt' dx, dXi

and
H A (r) rj./1)

a (r + 1) _ VSlii j_ A (r) Mm , A (r) Wm , q\

Dt + mi dx: + im dXi ' U ;

where D/Dt denotes the material time derivative. This result was obtained from the
consideration that the form of the dependence of the stress components on the gradi-
ents of the displacement, velocity, acceleration, •••,(» — l)th acceleration must be
independent of the particular choice of the rectangular Cartesian coordinate system x( .

It will be shown in the present paper, from similar considerations, that if, instead
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of describing the dependence of the stress components on the deformation by six func-
tional relations of the type (1.2), we have six independent functional relations of the
form

(dx^ dvlT_ dv™_ f Dt* VX* I _ ft n 41
' "KdX ' dx'dx'""' dx„ ' PQ ' Dt ' Df ' " ' ' DC 1 ' ^ '

s) = 0,

with
ft, = , (1-5)

then these functional relations must be expressible in the form

V (C AA *2) • A(n) / =0 (\
" * 7 \ PQ ) *~*-pQ J **-VQ > ' ' ' 1 **-PQ J PQ 1 **PQ 1 D PQ 1 * * * f ^PQ ) ^

if n > m, and in the form

F (C A••• A/ /?(1) /?(2) • •• =0 /i 7\" HV^PQ J -"-P a J **-PQ ) 1 **-PQ 1 ^PQ 1 f^PQ 1 £*VQ f ' ' ' ) *-*PQ ) ^ J \A • • /

if n < m, where Fit = Fin both cases, CPQ and A^{r = 1, 2, • • • , n) are defined by
(1.3) and (r = 1, 2, • • • , m) are the components of symmetric tensors, defined by

DR(r-1) A.(1)
T>(r) _ UD\y , o(r-l) OVl , r>(r-l) CWj
Bii -~DT + Bli ~d^ + B'1

and
B\V = <„• . (1.8)

Zaremba [2] introduced a rate of change of stress tensor, which is given in terms of
the tensors tti , A™ and S"' by — %tkiAl" —

It may be remarked that Eqs. (1.4) and (1.5) are not, in general, sufficient for the
determination of the stress resulting from the subjection of the material to a specified
deformation history. They may be regarded as a set of six independent differential
equations in six dependent variables <<,(<„ = <,-,•) and one independent variable t. Suit-
able "initial" conditions at specified values of t must be chosen if the equations are to
have a solution. However, we are concerned here only with the limitations which must
exist on the form of the relations (1.4), as a result of the necessity that they are invariant
under a transformation from one orthogonal coordinate system to another, quite apart
from any question of the sufficiency of the equations for the determination of the stress
components.

2. The deformation tensors. It is well known that if ds is the distance at time I
between two material particles of a body, undergoing a deformation described by (1.1),
which are located at x, and x, + dx{ in the rectangular Cartesian coordinate system x, ,
then

(ds)2 = dxk dxk (2.1)

= HtMdXidX" (2-2)
where X< and X{ + dX{ are the positions of the particles at a previous instant of time T.
Differentiating (ds)2 r times with respect to t, we have, from (2.1),

Dr(ds)
Dtr = A)', dXi dxj , (2.3)
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where is a symmetric tensor given by (1.3). A corresponding result in a convected
coordinate system was obtained by Oldroyd [3].

Equations (2.2) and (2.3), with the left-hand sides given constant values, describe
the deformation quadrics at the point of the body considered.

It has been seen [1, Sec. 10] that A [ ■' may also be expressed as

(r) dv'r dv]r) ^ (r\ dv'r" dv'tp)
dx, dx. \pJ dXj dXj ' { )

3. The stress tensors. If we define a quantity ® by

(B = tn dx idXj , (3.1)

then, since tu transforms as a tensor from the rectangular Cartesian coordinate system
Xi to any other, irrespective of any relative motion of the two coordinate systems, it is
apparent that (B is a scalar, invariant under such transformations of the reference system.
From (3.1), we have

D'(S> _ D'jtjj dXj dx^ _ /s\ D"~"tii DQ{dx, dxt)
Dt' ~ Dt' ~ \q) Dt'~" Dt•

z
a = 0

(s\ D'~Htt ^ (g) p-\dx<) D\dx,)"I
Aq) Dt'-" mU/ Dt''1 Dt1 J" ^'

Since

and

D'(dxi) _ dvw
Dt1 ~ dVi ~ dx. dX'

Dt"'1 *' dxK h ' '

where v'0) = x{ , so that dv\0) /dXj = Su , we obtain from (3.2),

D'a
Df h

With the definition
"'s\ D'-t,= £

a-0

we can re-write (3.4) as

_\q/ Dt'

«j q / n„,(a-0 ?v..(0~l

^£(l)VSr]- M\q/ Dt

D
Dtv = B,' dxt dx, , (3.6)

with B\I' = £,■!'. Since D'(S>/Dt' transforms as a scalar, between two rectangular Car-
tesian coordinate systems with arbitrary relative motion, Btransforms as a tensor
between such coordinate systems.

We note, from (3.6) and (3.3), that

b<;+1> dxt dx, = ^ (s<;> dx{dx,.)
(3.7)

(DB\? <., („
- I Z)« +B,i dx, +Bil dx, )dXidXi ■
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Whence,
d(.+d _ DB'a) . Rc«) dvll) . R(.) dvj1'

Dt + dx< + " dx, ■ ( }
4. The stress-deformation relations. We assume that the dependence of the stress

components on the deformation is described by the six functional relations (1.4) and
the forms of the functions are independent of the rectangular Cartesian coordinate
system in which Eqs. (1.4) are expressed. Let x*< be a rectangular Cartesian coordinate
system moving in an arbitrary manner with respect to x,- and related to x{ by

x* = a,,(Xj - b,) a.,ait = Sik , (4.1)

where ai;- and b, are, in general, functions of time. Let X* denote the coordinates ih
the system x* of a point located at X, in the coordinate system x{ and let v*m,
• • • , v*{'" be the components of the velocity, acceleration, • • • , (n — l)th acceleration
respectively in the coordinate system x* . Then, if I* are the components of the stress
in the coordinate system x* , we have

/dxl dv%^ dv^_ dv*r_ Dt£ Dmt*\
Jii\dX*' dx% ' dx* ' ' dx* 'l" ' Dt' ' Dtm J { )

It has been shown in a previous paper [1, Sees. 5 and 15] that we can choose the
coordinate system x* in such a way that:

(i) instantaneously at time t, the directions of the axes of x* are parallel to those
of z,-, so that

= fin j (4.3)

(ii) instantaneously at time t, the angular velocity, angular acceleration, angular
second acceleration, • • • , angular (n — l)th acceleration of the coordinate
system x* relative to xt are such that the velocity, acceleration, • • • , (n — l)th
acceleration fields relative to the coordinate system x* , in the immediate
neighborhood of the material particle considered, are irrotational;

(iii) instantaneously at time T, the axes of the coordinate system x\ have directions
relative to the coordinate system x, defined by

where

°« = g Co"1), , (4.4)

c2 =
dXj dx,
exk dXk (4.5)

and c(= || Cn ||) is the matrix satisfying this equation which has all its eigen-
values positive.

The choice of the coordinate system x* in accordance with the condition (ii) implies
that, at time t,

dv^/dx* = dv*'r)/dx* (r = 1,2, ••• , n). (4.6)

Also, the choice of the coordinate system x* in accordance with conditions (i) and (iii)
implies that, at time t,

dx*JdX*, = cu . (4.7)
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"With the notation

_ 1 (W±l , (4 o)
d" ~ 2 \dx*- + dx*< )' (4"8)

it follows from (4.6) and (4.7) that Eq. (4.2) can be re-written as

/ T)f* Dmf*\
f (c d*m d*m d*M t* ••• = 0 (4 9)J *i\^pq t upq j upq j y upq > 1pq i jy* i f J \±,ty/

at time t.
From (3.5), (4.6), and (4.8), bearing in mind that t'*<0) = x* and t* = t* , we see that

if Bf/*' are the components of the tensor in the coordinate system x* ,

B*(,) = £ s\ D-'Ll
_\q/ Dt

= ^+ ±
Dt- ^ &

•°q M dvm"'1
"a t?o\l) dx* dx* J

(4.10)

Also, at time t, from (2.4), (4.6) and (4.8), we see that if A?/*1 are the components of
rthe tensor A J J1 in the coordinate system x* , then at time t,

A*M = 2dt!" + £ (r)dl(r'v)dtw. (4.11)
p-1 \P/

Since,

A*r = 2d*r, (4.i2)
we see, from (4.11), that d*-r) can be expressed as a polynomial in the quantities A*^\
A*,(2), ■ • • , A*^r). We also see, from (4.10), that D't*/Dt' can be expressed as apolynomial
in the quantities A*"\ A*^2), • • • , A*,", t*Q , B*^l), B*^\ • • • , B*^'\ Consequently,
Eqs. (4.9) may be re-written in the form

(f 4*U) A*m ••• 4*<n> f* R*a) r*<2> ... R*<m>1 _ n ("4.1^
(PijypVQ ) **-PQ 1 **-PQ f J **PQ 1 ^PQ ) *->PQ 1 DPQ 1 f PQ ) "> V* •■*•<*/

if n > m and in the form
(r 4*<u A*w ... /* R*!1) R*(s> ... = n C4. 14.^

*Pii\PvQ } -"-PQ > **-PQ J 1 **PQ J lPQ 1 PQ 1 PQ f 1 -DPQ J

if m > n. It may be noted that if, in (4.9), is a polynomial function of cvt, d*Q(1> ,
• • • , Dmt*JDC, then in (4.13) and (4.14), f>u is a polynomial in the dependent variables.

Since B-J' and £?/*' are the components of the same tensor in the coordinate systems
Xi and x* respectively, we have

B*(" = Bi?apiati and t* = tuaviaai . (4.15)

Since Atf and A*fr) are the components of the same tensor in the coordinate systems
Xi and x*i respectively, we have

A*r = AVaviati . (4.16)
Since the coordinate system is chosen in accordance with condition (i) we see that,
at the instant of time t, aif is given by (4.3) and Eqs. (4.15) and (4.16) yield

5*(" =£<;' and A£r) = A£. (4.17)
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Introducing the results (4.17) into Eqs. (4.13) and (4.14), we have

, a™, a»\ • ■ •, a%, <„«,ic,b%, ■■■,sr) = o, (4.18)
if n > m and

(r A (1) A (2) ... A (m* / R(1) R(2) . . . R(m))   O (A 1
*rij\ypq ) Sipq i -^va i ' f i ^pq > ? dpq > * * * > pq )

if m > n.
Following the method adopted by Rivlin and Ericksen [1, Sees. 7 and 15] and em-

ploying the notation

Cii = CikCki = axt Ht' (4'20)

the relations (4.18) and (4.19) may be written as

TP (C A (1) A (2) ... A (n) f R(l) /?(2) . . .   O (d 91\" iiW-'pQ i -"-pa j **pq i ' ' ' i -rt-pq > ^pq > -°p<7 > ^pa y ' ' ' } **pq )

if n > m and

Fu(Cpq , A™, A™, ■■■ , Al:\ t„ , Bll\ B™, ■■■ , Bl?) = 0, (4.22)
if m > n, where Fu is a single-valued function of the independent variables.

If we assume in Eq. (1.4) that the functions /,, are polynomials in the variables,
then it follows from the manner in which Eqs. (4.21) and (4.22) are derived that Fu are
polynomials in the variables. It is also readily seen that if we assume the functions
are single-valued functions of dv(pl)/dx,, dv'^/dx,, ■ ■ ■ , dv'v"'/dxq, tva, Dtp„/Dl, D2tva/Dt2,
• ■ ■ , Dmtvq/DC then they may be expressed in the form (4.21) or (4.22) with CVQ omitted.
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