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THE TRANSFER FUNCTION OF NETWORKS WITHOUT MUTUAL REACTANCE*
By

AARON FIALKOW (Polytechnic Institute of Brooklyn)
and IRVING GERST (Control Instrument Co., Brooklyn, N. Y.)

1. Introduction. In this paper we develop a complete theory of the transfer function
of general two terminal-pair networks containing resistance, capacitance and self-
inductance, but no mutual coupling or ideal transformers. These results constitute an
extension of those obtained in a previous paper [5], for networks containing two kinds
of elements only. In part, our present techniques depend upon the ideas and methods
employed in [5] to which reference will be made in the course of the proofs.

Bott and Duffin [2] have characterized two-terminal networks without mutual
reactance. The present research is a first step toward solving the corresponding problem
for two terminal-pair networks. We do not require the results of [2] in this paper.

Recently several papers [8, 9, 10] have appeared which deal with the transfer func-
tion of RLC networks. These do not develop a complete theory but are concerned
primarily with the synthesis of a transfer function up to a constant multiplier. Even
with this restriction on the multiplicative constant, the synthesis procedures for grounded
networks described in these papers are all of limited applicability for realizing the general
transfer function of these networks. Furthermore none of the papers gives the properties
of the transfer function which are peculiar to general grounded networks and distinguish
it from the transfer function of general two terminal-pair networks.

On the other hand the present paper besides characterizing the transfer functions of
both grounded and general two terminal-pair networks, yields a synthesis realizing any
multiplicative constant up to the theoretical maximum which is allowable.

The transfer function A(p) is defined as the ratio of steady state output voltage to
input voltage in the domain of the complex frequency variable p. It is a real rational
function which we may write in the form

A ! \ TS N Tr p" 4" CftP" 1 + • • • 4" dn
A<*>' K d ~ K ■ <LI>

where K is a constant and N and D are polynomials which have no common factors.
We first consider the general grounded two terminal-pair networks (3 external

terminals) abbreviated 3 T.N. The conditions on A{p) in this case are given in Theorem
1 and are here described in an equivalent form as follows. The poles of A(-p) are in the
left-half plane or on its boundary except that p = 0 and p = are excluded. A pole
on the imaginary axis must be simple and have a pure imaginary residue. The zeros of
A(p) cannot be positive real but are otherwise arbitrary. The range of K is an interval
0 < K < K0 where K0 is the minimum value** of the function D(p) / N (p) forO < p <°°.
Conversely when a function A(p) satisfies these conditions a 3 T.N. may be synthesized
whose transfer function is the given A{p). In the sequel, this synthesis is performed
assuming an open circuit termination, but the technique may be modified to take account
of any finite resistive load without any essential change in the above results.

For the general two terminal-pair network (4 external terminals) abbreviated 4

*Received July 13, 1953. Presented to the American Mathematical Society, Nov. 13, 1951. (Cf.
Bull. Amer. Math. Soc. 58, 191 (1952)).

**K0 is a realizable value of K if and only if the minimum value is assumed only at p — 0 or p = <*>
or both.
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T.N. the results are given in Theorem 2. They differ from those stated above for a 3
T.N. in that there is no restriction on the zeros of A(p), and the range of K is now
— K0<K < K0 where here K0 is the minimum value* oi \ D(p)/N(p) | for 0 < p < °°.

In the synthesis procedure, it is convenient to distinguish two cases. These are:
Case I. The poles of A(p) all lie in the interior of the left-hand plane. Case II. A (p) has
at least one pole on the pure imaginary axis. The synthesis in Case I is relatively simple
to handle while that in Case II is considerably more complicated.

A synthesis procedure in Case II for a 3 T.N., even up to a constant multiplier, has
not been considered heretofore in the literature. For a 4 T.N., a method due to Kahal
[8] has appeared which claims to realize the transfer functions of Case II up to a con-
stant factor as a symmetric lattice. However, both his proof and conclusions are erroneous.
As a counter-example, we note that the realizable** transfer function A^p) =
K{p2 — 0.5 p + 0.5) /(p2 + l)(p + 1) which satisfies his conditions may not be synthe-
sized as a symmetric latticef for any K ^ 0. The foregoing example is an illustration
of a theoremff on lattice realization, the proof of which will appear elsewhere. On the
other hand, Weinberg [9] overlooks Case II completely, and erroneously states [9,
pp. 37, 53] that every transfer function may be realized as a symmetric lattice.

2. The grounded two terminal-pair network.

Theorem 1: Necessary and sufficient conditions that a real rational function A(p) given
by (1.1) be the transfer function of a 3 T.N. are: (i) The zeros of D are anywhere in the
leftr-half plane or on the imaginary axis with the origin excluded.
(ii) At a pure imaginary zero of D, A(p) has a simple pole with pure imaginary residue.
(iii) The zeros of N can not be positive real but are otherwise arbitrary.
(iv) m > n.
(v) The number K satisfies the inequalities 0 < K < K„ where K0 is the least of the three
quantities Kd, bm/an, 1 if m = n and of the first two quantities if m > n. If K0 ^ Kd then
K may equal K0 . Here Kd is the least positive value of k (if it exists) for which the equation
D — kN = 0 has a positive multiple root.

Proof: (a) Necessity
In the case of either a 3 T.N. or 4 T.N. we may write the transfer function (1.1) in

the equivalent form
A(p) = F12/F22 (2.1)

where Yl2 and F22 are the short circuit transfer and driving point admittances respec-
tively of the network, [6, pp. 134-136]. The zeros of D in (1.1) are either the poles of
Y12 or the zeros of Y22 which as is well known must lie in the left-half plane or on its
boundary, [1, Chap. VII]. This establishes (i) except for the exclusion of p = 0. This
last physically evident condition will drop out of later considerations.

*Ko is a realizable value of K if and only if the minimum value is assumed only at p = 0 or p = m
or both.

**The transfer function At(p) with K = 2 is realized by the parallel connection of the networks of
Figure 5.

fThis follows from the fact that the fraction (1 — A,)/(l + .4]) has zeros and poles in the right-
half plane for any K ^ 0, whereas for a symmetric lattice this fraction should be the quotient of the
two constituent impedances of the lattice.

ffThe theorem is: Let A(p) be a 4 T. N. realizable transfer function (i.e. one satisfying the con-
ditions of Theorem2) belonging to Case II. Define X„ = Re ji"-d(A~1)/dp-dn(A~1)/dpn}, n = 2, 3, •••.
Then A(p) can be synthesized up to a, multiplicative constant by means of a symmetric lattice if and
only if at each pure imaginary pole of A the first non-zero value of X„ occurs for n even and is negative.
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The case where D has a zero at p = iu0 can only arise if F22 has a simple zero and
Fi2 has neither a zero nor a pole at p = iw0 . The remaining possibilities, as is known,
may be excluded by use of the general residue condition

7*11^*22 ^12 0 (2.2)

for Re(p) > 0, [6, pp 216-218]. Here r„ , r22 , r12 , Re(p) represent the real parts of the
short circuit driving point and transfer admittances Fu , F22 , Y12 and of p respectively.
It follows that at such a zero p = iw0 of D, A (p) has a simple pole. If F22 = a(p — ioi0)
+ • • • , a > 0 then the residue of A(p) at p = ioj0 is evidently F,2 (iw0)/a. Since r22
(■ioj0) = 0, rn(tio0) ^ (2.2) implies that rl2(iia0) = 0. Hence Y12(iu0)/a is pure imagi-
nary. This proves (ii).

Condition (iv) is well known and follows from (2.2) and its consequences. To show
the necessity of the remaining conditions, the 3 T.N. in Fig. 1 is considered upon a nodal
basis.

o
Fig. 1

Here the ground terminal is taken as node 0, the other input and output terminals as
nodes 1 and 2 respectively. The remaining nodes are identified so that each branch is
an R, L and C in parallel. Hence the admittance yu (i ^ j) of the branch between nodes
i and j is of the form ap + b + c/p, a > 0, b > 0, c > 0. Of course yu = yu , and as
usual we write

V<i = Uvu V = 1, 2, ••• , t),
7-0

t

where t + 1 is the total number of nodes. Now let y',- = pyu (i, j = 0,1, • • • , t, i and j
not both zero). Then each ?/',• is a quadratic polynomial in p with non-negative co-
efficients, and y'u = y.Ln y'{i {i = 1, 2, • • • , t). Using the nodal equations of the
network, it follows* that we may express the transfer function A (p) in the form

A(p) = AjA2
where

Ai =

A2 =

2/21 y'23 ''' y'u

2/31 2/33 ■ ■ • y'zt

-y'n -y't 3 ••• y'u

2/22 2/23 ■ * ■ y2t

— 2/32 2/33 ••• -y'3>

-y',2 -y'3 ••• y'1

— c0p' + c,p' 1 + • • • + c, , (2.3)

= d0p' + dip' 1 -j- • • • + d, , d0 9^ 0. (2.4)

*Cf. [5, §2(a)] for details.
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Here Aa and A2 may have common factors and by (iv) the degree of At may actually
be less than s. In [5, Appendix A], it was shown that A2 = Ai + A,' where A[ is the de-
terminant obtained from A! by replacing the elements of its first column by y20 , —
2/30 , • • • , — y'io respectively. It was further shown that a determinant of the form A!
(or A{) is a polynomial in the y'it (i ^ j) with positive coefficients. These two results
prove that

0 < c, < dt , (j = 0, 1, • • • , s). (2.5)
As an immediate consequence of (2.5), it follows that p = 0 cannot be a pole of

A(p). For d, = d,-i = ■ ■ ■ = = 0, d»_*_i ̂  0 in (2.4) now imply c, = c,_i = • • • =
c,-k = 0 in (2.3). This completes the proof of (i). Incidentally, it also follows directly
from (2.5) that 0 < A(p) < 1 for p in the range 0 < p < (The equality sign may
hold only if p = 0 or p = <»).

Having established (2.5), the remainder of the proof for the necessity of (v) now
follows word for word as in [5, §2(a)] starting with Eq. (2.6) there.
(b) Sufficiency.

It is useful at this point to introduce a few notations which will simplify the exposi-
tion. Capital Latin letters (except for A, Y, Z and K) unless otherwise identified will
always denote polynomials in p with real coefficients. If R = XXo and S =

o idip' then R « S denotes that a, < /3, (i = 0,1, • • • , n). If P is a given polynomial,
P, and P0 will denote the polynomials consisting of the even powers and the odd powers
of P respectively. More generally, without reference to a given polynomial, the sub-
script e and 0 will indicate an even or odd polynomial respectively.

In terms of this notation, the following result is implied by the sufficiency proof of
[5, §2(b)]:
(A) Let S, have only simple pure imaginary zeros and let 0 <JC R, <5C Se. Then an LC — 3
T.N. exists whose transfer function is A(p2) = R./S. and whose F22 = Se/T„ with T0
any odd polynomial relatively prime to Sc such that Se/T0 is an LC admittance, T0 being
one degree lower* than S, .

For replacing p2 by p in A(pa) gives what we called an ii-function in [5, §2(6)]. In
the EC-network corresponding to this i2-function, as given by our synthesis procedure**
taking p1/2 Se(pU2)/T(,(pl/2) as the F22 , replace each resistance R by an inductance L
with L = R and the LC-network required for (A) results.

Now suppose that A(p) as given by (1.1) satisfies the conditions of Theorem 1.
We shall construct a 3 T.N. whose transfer function is 4(p). The first step in the synthesis
procedure is to write A{p) in a special form analogous to the special form (i?-function)
used for RC networks. The argument of [5, Appendix B] may be used here to show the
existence of a Hurwitz polynomial")" U (actually the zeros of U may be taken to be
negative real and distinct except that in the special case where N and D are both even
functions of p we may use a non-Hurwitz polynomial U having only pure imaginary
zeros distinct from the zeros of D and from each other) such that in

A(p) = KUN/UD = G/H
"This restriction on To is easily removed but we do not stop to do this here.
**Of the synthesis procedures mentioned in [5], the last alternative method in the footnote on p. 120

which was later given in detail in [4] usually yields a simpler network.
fin this paper we shall use the term Furwitz polynomial in the strict sense, i.e., a real polynomial

having a positive leading coefficient whose zeros are in the interior of the left-half plane.
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we have
0 « G « H. (2.6)

For an examination of the proof in [5, Appendix B] shows that in addition to (iii),
(iv) and (v) of Theorem 1, use was made only of the fact that the zeros of D were not
positive real or zero, and this is guaranteed by (i) of Theorem 1. This common factor
technique achieves positive coefficients in the transfer function as is stated in (2.6).
Recently Weinberg [J. Appl. Phys. 24, 1526 (1953)], citing references to Bode, has
stated that the use of common factors for similar purposes is well established and almost
common knowledge. This is hardly justified, for examination of these and other references
reveals at best a superficial similiarity to our method. Furthermore, in view of his state-
ment it is surprising that in none of the literature on transfer functions prior to [5]
including his own thesis [9] has our or a similar method been employed,
(bj) Synthesis: Case I.

We now assume that H is a Hurwitz polynomial. Consider H = H0 -\- He , H0 =
pH', . As is well known [7, p 400] II e and II'e are relatively prime polynomials having
simple pure imaginary zeros and such that H0/He is an LC-admittance. In view of
(2.6) we have G = Ge + G0 , G0 = pG', with 0 « G0 H0 , 0 « G'e « H'e . Hence by-
(A) the functions

^ = G'JH'e , A2 = GJH.
are LC — 3 T.N. transfer functions.

We may write

+ vE>_,.F2
pH[ ap + p + H'e' H. ap + H,'

where a > 0, a > 0, > 0 and F0/H'e and F'a/Ht are LC impedances, F0 and F'0 being
of lower degree than II', and II, respectively. Of course one of a and a' is always zero.

Now according to (A) realize the transfer functions Ax and A2 by two LC — 3 T.N.
ri and r2 whose F22's are = H',/F0, YlV = He/F'0 respectively. Modify the networks
r i and r2, without changing their transfer functions, as shown in Fig. 2 to form r; and

>0

n'

r£ taking

Fig. 2

Zi — 1 + ap + — , Z2 = 1 + a'p.
V

The F22's of the networks TJ (i = 1, 2) are evidently 1 /(Z, + 1/Y&), (i = 1, 2) or
H0/(H0 + He) and He/(H0 + He) respectively.* In view of (2.1) the corresponding

*The method used here is analogous to the last alternative procedure mentioned in [5], footnote on
page 120 and given in [4]. Similarly, techniques based on the other procedures given in [5] may also be
employed here.
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F12's are G0/H and GJH respectively. Now connect the networks r[ and r2 in parallel
to form a new 3 T.N. T whose F12 = G/H and whose F22 = 1 so that the transfer func-
tion A(p) of T is G/H. This completes the synthesis in Case I.
(b2) Synthesis: Case II.

We now assume that H has some pure imaginary zeros. If all the zeros of H are pure
imaginary, we may apply (A) to obtain an LC-network realization. Otherwise write
H = P, J where

P. = HI (P2 + <4) (2-7)
A-l

and J is a Hurwitz polynomial. Of course the to* are distinct and different from zero and
the residue of A (p) at p = ± iuk is pure imaginary.

The synthesis method here consists of a reduction procedure by which the realization
of A (p) is made to depend upon the realization of successively simpler transfer functions
until we finally reach a stage in which we may use the result (A) to effect an actual
realization. In order to apply this method of reduction, it is necessary that the transfer
function be written in a particular form M/Q (described in Lemma 1) and that a positive
real function Q/S having special properties (also given in Lemma 1) be associated with
A{p). In Lemma 2 it is shown how to transform the transfer function into the required
form as well as how to construct the function Q/S. The essential ideas of the reduction
algorithm are now described. The justification for the various steps is given in Appendix I.

Starting with the positive real function Q/S, Q and S of the same degree, we effect
the decomposition

Q _ pQL . 01
S S ^ S '

where pQ'/S and Q"/S are again positive real functions, with Q' and Q" one degree
lower than Q. Corresponding to the partition Q = pQ' + Q" we may form the partition
M = pM' + M" so that At = M'/Q' and A2 = M"/Q" are of the same special form as
M/Q but of lower degree.

We have

^ n , ^ n
VQ' ~ V Q" Q" Q" ' °

where Q'/S' and Q"/S" are positive real functions of the same special form as Q/S.
Suppose that the transfer functions Ai and A2 are realized by 3 T.N. I\ and r2 whose
short circuit driving-point admittances are Y'22 = Q'/S' and Y2V = Q"/S" respectively.
Then connecting the impedances Zx = a/p and Z2 = bp to I\ and r2 respectively, as
in Fig. 2, we get 3 T.N. H , r2 whose Y22's are ^22' = pQ'/S, <y22> = Q"/S respectively
and whose transfer functions are and A2 respectively. Thus the F12's of and r2
are = pM'/S, "yj" = M"/S respectively. The parallel connection of and r2
gives a network T whose transfer function is

(pM'/S) + (M"/S) _ M
(PQ'/S) + (Q"/S) Q

and whose F22 = Q/S. We have thus made the realization of the pair A{p), Q/S depend
upon the realization of the simpler pairs Ax , Q'/S'] A2 , Q"/S.
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As shown in the remarks following Lemma 1, the reduction process may be continued
until we reach transfer functions belonging to either one of the two following categories
which we designate as subcases (a) and (/S) respectively and whose synthesis we now
describe.
(a) Here A = M/Q with Q Hurwitz and of degree 2s. Also 0 <SC M « Q, Q = P. + Q0 ,
M. = aPe , 0 < a < 1. The required F22 is Q/S with S = P, .

If s > 2, we may expand the LC-impedance Pe/Q0 = P./pQ'e as

P' - _L 1 4- I"
r\> — PP i i /VpQ, p Q.

where & > 0, 7 > 0 and F0/Q'e is an LC impedance with F0 of lower degree than Q'„,
Now apply (A) to realize the LC transfer function (M0/p)/Q'e by means of a network.
I\ whose Y22 = Q'JPa • Form the network r( as in Fig. 2 taking Zx = /3p y/p so that-
the Y22 of r; is Qo/P, . Consider the L-network F2 whose series arm is Ya — a and whose
shunt arm is Yb = 1 — a. The parallel connection of r( and r2 gives a network whose
transfer function is M/Q and whose F22 = Q/S.

If s = 1 i.e. A(p) = [5p + a(p2 + <£)]/[tp + p2 + coj] where 0 < 5 < e and the
required F22 = 1 + «p/(p2 + w?), form the parallel combination of the previous net-
work r2 and an L-network I\ whose series and shunt admittances are yla = 8p/(p2 +
oji) and yn = (e — b)p/{p2 + to?) respectively.
(/3) Here A = M/Q with 0 « M = M, « Q = Pe . The required F22 is Q/S where
S = P. + S0 , S Hurwitz and of degree 2s.

Realize the LC transfer function M./Pe using (A) to get a network T whose F22 =
PJSo. Then form as in Fig. 2 taking Zx = 1. This is the required network.

The synthesis method of Case II may easily be modified to provide an alternate
synthesis for Case I also.

A second synthesis method for Case II which is also inductive in nature (but for
which we give no details) may be described as follows. The transfer function A is written
as A = rAl + where r>0, s>0, r + s<l and Ax and A2 are 3 T.N. transfer
functions. It is easy to show that A is realizable if Ai and A2 are. We may choose the
function Ai so that it has the same pure imaginary poles as A but its numerator consists
of even (or odd) powers only. The synthesis of Aj is then accomplished easily by a
modification of the procedure of Case I. As for A2, it may be taken to have one less pole
than A on the imaginary axis and the same process is now applied to it until all the
pure imaginary poles are eliminated, when the results of Case I apply. This synthesis
results in a network of about the same complexity as the one previously given.

3. The two-terminal pair network

Theorem 2. Necessary and sufficient conditions that a real rational function A(p) given by
(1.1) be the transfer function of a 4 T.N. are (i), (ii), (iv) of Theorem, 1 and (v'): The number
K satisfies the inequalities — K0 < K < K0 where K0 is the least of the three quantities
| Kd I, | bm/an [, 1 if m = n, and of the first two quantities if m > n. If K0 \ Kd \ then
K may actually equal ± K0 . Here Kd is that real value of k of smallest absolute value (if it
exists) for which the equation D — k N = 0 has a positive multiple root.

Proof: (a) Necessity

By the remarks in Section 2 (a) only the proof of (v') remains. Consider the 4 T.N.
on a nodal basis taking the input terminals as nodes 0 and 1, the output terminals as
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nodes 2 and 3, and choosing the remaining nodes as in the 3 T.N. case. Then in the
notation of Section 2 we have*

A(p) = (A, - A3)/A2

with A, and A2 as in (2.3), (2.4) and

2/31 2/32 2/34

y 21 2/22 2/24

y't\ 2/42 2/«A3 —

2/u 2/12 2/14

2/3«

2/21

-2/4',

2/<i

<&>* + c/p-1

Since A3 is of the same form as A, , we have 0 < c' < df (j = 0, 1, • • • , s) in addition
to (2.5). As a consequence of these equations, we note that 0 < | A(p)\ < 1 for p in the
range 0 < p < °°, with the possibility that | A(p)| = 1 existing only when p = 0 or
p = co. The remainder of the proof now follows word for word as in [5, §4(a)] following
equation (4.2) there.
(b) Sufficiency.

Let A(p) satisfy the conditions of Theorem 2. We will realize A(p) by showing it
can be written as A = — A2 with A, and A2 transfer functions of 3 T.N. If T, and
r2 are 3 T.N. corresponding to Ax and A2 respectively, then the 4 T.N. T of Fig. 3
corresponds to A.

0
Fig. 3

By the argument of [5, §4(b)] together with the remarks in Section 2(b) following
(2.6), we show that A(p) may be written in the form A(p) = G/H where H ± G » 0.
(b0 Synthesis: Case I.

If H is Hurwitz and (?i , — (?2 consist respectively of the terms of G having positive
or negative coefficients, then A = (GJH) — (G2/H) where each of the fractions is a 3
T.N. transfer function in the realizable form for Case I.
(b2) Synthesis: Case II.

If H = P.J, P. = II(p2 + oil), J Hurwitz then apply the method** of Appendix II

*For details cf. [5, §4(a)].
**The only modification in Appendix II consists of considering J, ± G* instead of G* and J, — G*

in the argument following (II.l).
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to get A in the form A (p) = M/P, Q* with Q* Hurwitz, Q* divisible by Pe and with
M, = P, M*, P, Q* ± M0 » 0, Q* ± M* » 0. Denoting the positive terms of M* by
M\ and the negative terms by — M" and using M'0, M" similarly with respect to M0
we have A = Ax — A2 where A, = (M'0 + P, M'.)/P, Q* and A2 = (M" + P, M'.')/Pe
Q* are 3 T.N. transfer functions of the form considered in §2(62)-

We note if one desires the synthesis of A(p) up to a constant multiplier only, a
procedure based directly upon Case I and having the simplicity inherent in LC synthesis
techniques is possible. A brief description follows: Write A(p) = KN/D where D =
P, D', Pt = IT(p2 + ul) D' Hurwitz. Decompose A so that A = (Ni/Pe) + (N2/D')
where N, must be an even polynomial. For sufficiently small positive constants a, /3
the transfer function Ai = a Ni/P, may be realized by an LC network I\ , and A2 =
0N2/D' may be realized by a Case I RLC network. Then the function [f3Ax/(a + /3)] +
[a A2j (a + /3)] = a 13 A/(a + |3) is realized by first connecting a suitable RLC impedance
Zl and a suitable LC impedance Z2 to r, and r2 respectively (similar to the connection
shown in Fig. 2) and then putting the modified networks in parallel.

4. Examples, (i) The following example illustrates the theory and synthesis pro-
cedure for Case I. Consider the synthesis of the 3 T.N. transfer function A(p) = G/H =
(3 p2 + p + 2)/(p3 + 3p2 + 2 p + 3). Calculation shows that K0 = Kd — 4.468. We
shall synthesize the given A (p) where K = 3 < K0. Here II is Hurwitz and 0 <JC G <3C H,
so that A(jp) is in the realizable form of Case I.

We consider the LC — 3 T.N. transfer functions

Uv') - - T^-3 , ^--^-^±2-(H0/p) p + 2 ' Ht 3p + 3
Since

3 13 p
pH[ 2 ' p + 2 ' p2 + 2

and

vEl _ V _l i  
— o I O '2H. 3 3 p + 1 '

we must realize At(p2) and A2(p2) with Y22's respectively Y22 = 2(p2 + 2)/3p and
Y2V = 3(p2 + l)/p. To do this, first realize Aj(p) = l/(p + 2) and A2(p) = (3p + 2)/
(3 p + 3) as RC-networks whose F22's are respectively 2(p + 2)/3 and 3(p + 1). This
results in two L-networks I\ and r2 whose series and shunt arm admittances are yla —
2/3, ylb = 2(p + l)/3; y2a = 3 p + 2, y2b = 1 respectively. In T, and r2 replace each
resistor R by an inductance L with R = L. We get L-networks r*, rt with series and
shunt arm admittances y*a = 2/3p, y* = 2(p2 + l)/3p; y2a = 3p + 2/p, y2*b = 1/p.
Networks F* and r2 realize Ax{p2) and A2(p2) with the required F22's.

Now connect Zx = 1 + 3/2p and Z2 = 1 + p/3 to Tt and T* respectively as in Fig.
2 to form I\' and r2 whose parallel combination T given in Fig. 4 is the required 3 T.N.
(ii) The transfer function A(p) = K(p2 — 0.5p + 0.5)/(p2 + 1) (p + 1), mentioned in
the introduction as unrealizable by means of a symmetric lattice, belongs to Case II.
Here K0 is found to be 2 and we synthesize A(p) with K — K0 as a 3 T.N. In order to
apply the procedure for Case II, we work with A(p) in the form A(p) = M/Q = (2p3 +
p2 + l)/(p2 + 1) (p + l)2 together with Q/S = (p2 + 1) (p + l)2/(p" + bp3 + 5p2 +



126 AARON FIALKOW AND IRVING GERST [Vol. XII, No. 2
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5p + 2) which satisfy the conditions of Lemma 1. The synthesis leads us to the network
formed by the parallel connection of those of Fig. 5 as a realization of A(p). For lack of
space, all details must be omitted.

*/S %

Fig. 5

Appendix I
Lemma 1. Let M/Q and Q/S be a real rational function and a positive real rational f unci urn
respectively satisfying the following conditions:
(i) The zeros of Q are in the left half-plane including the boundary.
(ii) 0 « M « Q.
(iii) Q and S are each of the same degree r + 2s, r > 0, s > 0.
(iv) Q and S have no common pure imaginary zeros including p — 0.
(v)

? [~Ql P2,(iu)(PoUT + 0ico2r 2 + ■ • • + 0r) n _ n / . „ .*?.LsJ  [SWT ' ft >00-0,1, •••,,) .
(vi) Either (a) Me = PeM* , Q. = P.Q* , S0 = P,S$ , 0 « M* <3C Q? ; •»

(b) M0 = PtM* , Qo = P.Q$ , Se = P.S* , 0 « M* « Q* .
Then polynomials S', S" and a decomposition

  M = pM' + M", Q = pQ' + Q"
*The polynomial P, is defined by (2.7).
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exist such that each pair of functions M'/Q', Q'/S' and M"/Q", Q"/S" satisfy all the
preceding conditions with r replaced by r — 1 and S = aQ' + pS' = bpQ" + S" with
a > 0, b > 0.

Proof: It suffices to consider the case in which vi(a) holds, the other case being treated
in a similar manner. Our first goal is the decomposition of Q/ S. We note that the zeros
of <S are also in the left half-plane with simple zeros on the boundary because of (i),
(iv) and the fact that Q/S is a positive real function. Since if

Re [B(p)l = fl(o>2)
Lc(p)J I CM

then

Re [ml = g("2)
;:r* lp^j i bm i2 '

it follows from (v) that

[S~\ _ P\{i»W + /31o>2r—2 + • • • + (i.)
LeJ ~ i qm r

Hence any pure imaginary zeros of S must be zeros of P, . Thus we may write S — P'.T
where P', = TL'(p2 + oil) of degree 2s' < 2s, contains all the pure imaginary zeros of S
and, of course T is Hurwitz of degree 2(s — s') + r.

It follows that Q/S may be expanded to yield

Q _ v1' , E _ Lo , ,T .
5 — p2 + oil T P'.T U*1;

where E' ranges over the zeros of P', and ak > 0. Also from (v)

Re r|l = [P.M/P;M]2 •
p — iu L-* J

+ /3lt02r 2 + ' ' ' + fir)

I T(iw) |2

Let 0'i and fi" (i — 1, 2, • • • , r — 1) be any positive numbers such that fi{ = fi' + 13'/.
Let fi'0 = /30, fi'/ = fir ■ Form the positive real rational functions pR'/T and R"/T whose
numerators are of degree 2(s — s') + r at most and where*

Re = [P«M/P:M]2 • (^2r + • + A-*'2) , (i.2)

?. m - (fi'i'u2''2 + fi'2Wr~4 + • • • + fi'r')
T(iw)Re V = [PJM/P'JM? • ̂  1 7w- x ^ • (1.3)

Then both R' and R" are of degree 2(s — s') + r — 1. We have (p R'/T) + (R"/T) =
R/T since the real parts of each member are equal for p = iu and in this case the function
is uniquely determined by its real part.

Now split each ak in (1.1) so that ah — a't + a", a'k > 0, a" > 0 and write L'0/P'. =
E' («£P)/(P2 + «!), U'/P'. = E' «p)/(p2 + d). Then

l-f + f
*For the construction of a positive real function with given denominator and given real part on the

imaginary axis see [3, pp. 97-98j.
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where
pQ' = L'0T + pR'P'e , Q" = L'o'T + P',R". (1.5)

Q' and Q" are each of degree 2s + r — 1. The desired decomposition of Q/S is given by
(1.4) and (1.5).

Before proceeding to obtain a corresponding split of M, we must first show that
P, divides both Q'0 and Q','. As a preliminary to this we need the result

T0 = PeUo- (1.6)
We have

p rQ~1   Q,(iu)SX — iu) + Qo{io>)S0( — ioj)
LSJ ~ I S(uS) |2

_ PXiu)[Q%(it>i)SX—tt>)) + Qo(to)<So(—w)]
I SO*) |2

where we have used vi(a) to get the last form. In view of (v) it follows that Pe(iu) (and
a fortiori P'e (io>)) divides [Q* (iu) Se (— iw) + Q0 (too) St (tw)]. Now P'e (iu) divides
S. (—toj); but because of (iv) P', (m) is relatively prime to Q0 (iw). Hence <S* (t'co) is
divisible by P'. (to). Thus T„ = S0/P', = P. (S*0/P'4) which is (1.6) with U0 = S%/P't.

Coming back to Q' and Q", we show now that

Q'/ = P.C. . (1.7)
In view of (1.3) and using an argument similar to that given above in the proof of (1.6),
we find that [R'/ (iw) T, (— iai) + R',' (iu) T0 (— ico)] is divisible by [Pt (ioi)/P't (too)]2.
Since T is Hurwitz and by virtue of (1.6) we have P, dividing T0 but relatively prime to
T, . Hence PJP'. divides R". Using this result in the second equation of (1.5) and again
noting (1.6), we find that (1.7) holds. A similar argument using (1.2) and the first equa-
tion of (1.5) shows that

Q'o = P.D'0 . (1.8)
We are now ready to decompose M. Equating the odd and even parts of the numerators
in (1.4) and deleting the common factor Pc , we get

Qo = PQ'< + Q'o' , Qt = pD'0 + Ce . (1.9)
Since 0 « M0 « Q0 and 0 « M* « Q* by (ii) and (via), we may obtain* polynomials
N'o, No, B'„ B'/ such that N'0 + N" = M0, B'e + B'/ = M* and 0 No <5C pQi , 0 <K
N'0' « Q'0', 0 « B; « pD'o, 0 « B'/ « C. . Now define M' = (N'0 + P, B'.)/p, M" =
N'o' + P, B'/. Then M = pM' + M". Since B't is divisible by p2, M' is actually a poly-
nomial. Also P, divides both M'0 and M".

Finally we obtain polynomials S' and S". In pQ'/S, Q"/S, take out the zero at
p = 0 and p = °° respectively in the usual way. Then we may write

7 ^ nvQ' v Q'' Q" Q"' a

*We are here using the following result whose proof is straightforward. If R and S are any poly-
nomials with real coefficients and 0 <SC R « S, 0 <K S, , 0 <3C S2, Si + S2 = S then there exist R, and
R-i such that 0 « Ri « Si , 0 <SC Ri <X S2, + R2 = R.
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Here S'/Q' and S" /Q" are positive real functions. The relations

S = aQ' + pS' = bpQ" + S" (1.10)
hold, and together with (1.7), (1.8) and vi(a) imply that Pe divides both S'e and S'0'.
Also we have Re (p = ioi) [S'/Q'} = Re (p = iu) [S/pQ']) and since by (1.5) and (1.2)

1 [f ] - - [f ] - «».'w""+ r'+ ■Re
P" i a

it follows that

Re \%] = P](iaj)
p<m io) L& J

Similarly, we get

Re [|^] = P\(iu)

(fa2-2 + ptf-* + • • • + _,)
I S'(ic) |2

Wa"- + &Wr-4 + • • • + W)
I s"(i») |2

By the last two equations S' and S" are both of degree 2s + r — 1. We have now obtained
the required pairs of functions M'/Q', Q'/S' and M"/Q", Q"/S". The preceding proof
contains a verification that they satisfy all the conditions of Lemma 1 except (iv), (with
r replaced by r — 1). In particular the first pair satisfies vi(b) and the second pair vi(a).
To establish (iv) for Q' and S' note that by (1.10) a common factor p2 + a of Q' and S'
must divide S and hence P'e. But then by the first equation of (1.5) it must divide L'0
which is impossible. A similar argument proves (iv) for Q" and S". This completes the
proof of Lemma 1.

The reduction procedure of Lemma 1 may be continued for each pair of functions
until we reach pairs for which r = 0. Let then A = M/Q and Q/ S satisfy the conditions
of Lemma 1. with r = 0. We now investigate what this implies as regards the form of
M, Q and >S. First suppose condition vi(a) holds. We may take Q = Pe + Q0 . Since
S is of degree 2s and P, divides S0 we must have SQ = 0. But then using (v) we find that
P, (zco) Se (— ioj) is divisible by P2 (iai). Thus S = S, = dPe , d > 0 and without loss of
generality we may take d = 1. In view of (i), (iv) and (v), Q is Hurwitz. Also by vi(a)
Me = aPe , 0 < a < 1.

Next suppose condition vi(b) holds. Then Q0 = 0, and by (ii), M0 = 0. We may take
S = Pe + S0 , and as in the preceding case show that Q = Qe — P, , and that S is
Hurwitz.

Appendix II

Lemma 2. Let A(p) = G/H where* 0 « G « 11, II = PeJ, J Hurwitz, and suppose A{p)
satisfies the residue condition (ii) of Theorem 1. Then functions M/Q and Q/S can be
constructed having the properties stated in Lemma 1 and such that A{p) = M/Q.

Proof:** If Pe does not divide Je then we begin by constructing a Hurwitz polynomial
F such that [FJ]e is divisible by Pe . Let J. = P', J* where P', = II' (p2 + w2) contains
the common zeros of P„ and Je .

*The polynomial Pe is defined by (2.7).
**Our construction will yield a pair of functions which satisfies vi(a) of Lemma 1. By a parallel

procedure we can get a pair which satisfies vi(b).
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Let icca be a zero not included in P'e and suppose J(iua) = a + i/3, a ^ 0. Form the
LC-impedance r)F'0/F'e with jj constant and F'a and F't relatively prime polynomials
subject to the following further conditions: (i) P'c divides F'0; (iia). If /3 = 0, p2 + a>l
divides F'e, y = 1; (iib). If /3 ^ 0 choose the remaining zeros of F'0 and the zeros of F'
such that sgn [iF\ (iua)/F'Q (toJ] = sgn (fl/a). Take tj = iaF', (iwa/fiF'0 (iua).

It follows that r; > 0 and F' = F'. + ri F'0 is Hurwitz. One readily verifies that [F'J\,
is divisible by (p2 + ul) P',- The process is continued with F'J to determine an F", etc.
until all of the uk are exhausted. Then F may be taken as the product* F' F" • • • .

Now consider A(p) = GF/PeJF. Since P, divides [JF], it follows from the residue
condition (ii) of Theorem 1, that P„ divides [GF], . We may therefore suppose that
function A(p) of Lemma 2 has already been prepared so that Ge = Pe G*, J, = P,J*.

Of course
0 « Go « PeJ0 , 0 « Gc = P.G* « PJe . (II.l)

If also 0 <5C (?* <3C J„ , then we have one of the special forms of the transfer function
required for Lemma 1. In the contrary case, we will bring this about by means of a
suitable common factor. Consider the polypomials G* and J, — G* — (PeJe — Ge)/P, .
In view of (II.l), both of these even polynomials have positive leading coefficients and
have no positive real roots. Hence by [5, Appendix B] (with p replaced by p2) there exists
a polynomial Ee = n(p2 + 52) with the 5, real, distinct and different from the ± u>k and
zero, such that

0 «E,Gf <&EeJ. . (II.2)
We now choose as our common factor the Hurwitz polynomial

B = PeP'0 + E.E'.

where P'0 and E'e are any polynomials making P,P'0/EeE'e an LC impedance with PtP'a
relatively prime to EtE\ .

Now define
M = GB, Q* = JB, Q = PeQ*,

so that A(p) = M/Q. Then we have

M. = P,[GoP: + G*EeE'.], Q* = P.P'aJ0 + PeJ%E.E: .
Hence Pt divides Q* and by (II.l) and (II.2), 0 « MJP. = M* « Q*. Thus M/Q is
in the form required by Lemma 1.

We will now construct the function Q/S mentioned in Lemma 2. We note that Q*
is Hurwitz and let its degree be r. Choose any positive numbers S'k (fc = 1, 2, • • • , s) and
(3k (k = 1, 2, • • • , r), and form the positive real rational function**

where
f-Eir^ + li (II.3)Q k-i p + uk Q*

Re T—1 — ̂ 2r +/3.C02-2 + ••• +gr _ AM
LQ*J " | Q*(uo) I2 ~ I Q*(iu) I2 ' (11-4)

*A more complicated algorithm which handles all of the w's simultaneously and results in a poly-
nomial F of much lower degree can also be given.

**Cf. footnote regarding Eq. (1.2),
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Then S and Q are both of degree r + 2s. It follows from (II.3) that S and Q have no
common pure imaginary zeros. Also since P, divides Q* and

-S = P.Q* Z + P'
P +

we have that S0 = P.St. From (II.3) and (II.4) we get

TSl _ P2.(iu)6(u)
LsJ ~ | S(io>) |2 '

Thus Q/S has all the properties required by Lemma 1.
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