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ON THE TIMOSHENKO THEORY OF TRANSVERSE BEAM VIBRATIONS*

BY
C. L. DOLPH
University of Michigan

1. Introduction. The classical one-dimensional theory of flexural motions of elastic
bars is based upon the Bernoulli-Euler equation

d*y* *y*
Bl ke + p 50 = 0, 6

where y*(z, t) is the displacement at time ¢ of a point on the central axis. Equation (1)
has long been known to be inadequate for the higher modes of vibration. Although
Rayleigh [1] introduced the effect of rotary inertia, the one-dimensional theory did not
adequately explain the higher modes until Timoshenko [2], [3], extended it to include
the effects of transverse shear deformation. The Timoshenko theory is based upon the
following equations:
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In these equations y*(z, f) represents the transverse deflection, M*(z, ¢) the bending
moment, V*(z, {) the transverse shear force, 8*(z, ¢) the neutral axis slope due to bending,
and o*(z, t) the neutral axis slope due to shear. Also, EI represents the flexural rigidity,
KAG the shear rigidity, and I, the so-called rotary moment of inertia. I, is equal to
pl/A where p is the mass per unit length, I the area moment of inertia, and A the cross-
section area. The first two of the above equations are stress equations of motion, the
second two are stress-strain relations, and the last is a geometric strain-displacement
relation.

While these equations may be derived in a plausible fashion from the laws of dynamics
and of elementary strength of materials, their ultimate justification, as well as the range
of their validity, must be deduced from the general equations of elasticity. This has
recently been accomplished by Mindlin and Hermann not only for beams but for many
other approximate equations of elasticity. While these results have not yet been pub-
lished, they were presented at the Maryland Symposium in Elasticity in the spring of
1952. Some hints as to their method may be gleaned, however, by reference to Mindlin

(4].
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The present paper presents a derivation of some of the consequences of the
Timoshenko theory. These same results could be deduced by use of the basic approach
of Mindlin and Hermann. However, since the Timoshenko theory has formed the starting
point of many investigations (e.g., [5], [6], [7], [8], [9]) an elementary approach based
directly and solely on the equations of that theory will be employed here.

The simplicity of the treatment presented here results from the fact that, apart
from the last section, it is based directly upon the equations which result from the above
when o* alone is eliminated. This is in contrast to the more usual treatments which are
based upon the involved displacement equation obtained by eliminating all variables
except y*(x, t) from the above set. Some idea of the complexity introduced by this latter
procedure can be gathered from an inspection of the displacement equation for uniform
beams which is known to be the following:

a'y* ( E1p> a'y* Tp d%* | 3%* _
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The main consequence of the approach in this paper is the fact that the discussion of
orthogonality, initial value problems, problems involving external forces and moments,
and problems involving time dependent boundary conditions for the Timoshenko theory
can be made to parallel step by step the familiar treatment of the classical Bernoulli-
Euler theory. In particular, for the uniform hinged-hinged beam, a complete analytical
solution can be given (much of it will be presented here) to all of the above problems.
Moreover, for non-uniform beams, the computation of characteristic values by analogue
simulation or by other automatic means is much more direct if the system approach is
used and the results of this paper can be applied immediately (cf. [9]).

There are of course important points of difference between the Timoshenko theory
and that based on equation (1), or upon theories which neglect either the correction
due to shear or rotary inertia. The most important of these is the existence in
the Timoshenko theory of two sinusoidal modes of different frequencies corresponding
to the same spatial factor. These two sets of modes are, moreover, orthogonal to each
other in terms of the two term orthogonality relation which forms the kernel of our
method. The existence of the second set of modes also makes it possible to satisfy the
four initial conditions required by the Timoshenko theory.

Finally, the existence of the second set of modes makes it possible to demonstrate the
completeness of the set of particular solutions, sinusoidal in the time, for the above
named problems of the Timoshenko theory.

2. Separation of variables and the orthogonality relation. The separation of variables
process can be applied directly to (1) but not to either (2-6) or (7). Thus, for example, (7)
will separate under the assumption that y*(z, ) = y(z) T(¢) if and only if one of the
quantities I, , 1/KAG vanishes. All will, however, admit solutions sinusoidal in time.
Thus if we set y*(z, 1) = y(x)e'’, V¥(x, t) = V(x)e'', M*(x, t) = M(z)e’*", B*(z, t) =
B(z)e'** and eliminate o* from the system (2-6), it reduces to the following:

dVv
% = P“’zyy (8)

Wy = 1, ©
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a8 _M _
dz B[O (10)

dy B+KAG 0. (11)

In order to discuss the orthogonality of solutions sinusoidal in time for a beam of length
L we note that integration by parts furnishes the following Lagrange identity appropriate
for the system (8-11) in the usual way:
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Thusif y, , V., B; and w; , (i = 1, 2), represent two solutions of (8-11) with boundary
conditions that make the right-hand side of (12) vanish, the following orthogonality
relation is obtained, independent of whether the beam is uniform or not:

L
© — o) f (oys¥z + IoBiBs] dz = 0. (13)

Although many boundary conditions are possible, this discussion will be limited to the
consideration of free ends where M* = V* = 0, hinged or simply supported ends where
y* = M* = 0, and built-in ends where y* = g* = 0 (although some authors mistakenly
use y* = dy*/dxr = 0 in the Timoshenko theory)'. Thus, from (12) it is apparent that
(13) will hold for: (a) the free-free beam; (b) the cantilever beam (i.e., one end built-in,
the other free); (¢) the hinged-hinged beam; (d) the built-in, built-in beam; and (e) the
built-in, hinged beam.

If I, is zero, and wi 5 w; , the relation (13) reduces to
L
fo oYy dx =0 (14)

which is identical to that of the usual textbook theory. This shows that the displacements
associated with different modes are orthogonal with respect to the weighting function
p(z).

Even if I, is not zero, the relation (13) is readily interpreted. As we shall see in §6
the solution of the initial and boundary value problem will, by our method, reduce to
the determination of a set of constants C, (n = 1, 2, - - -) such that two given functions
f(z) and g(z) admit the simultaneous expansion

@ = X 0w@, 0@ = % CaE.

1For a discussion of this point as well as of the orthogonality relation for the cases where either the
shear or rotary inertia term is neglected, see [10].
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In order to show that this is possible in virtue of the relation (13), we introduce two
mutually perpendicular unit vectors e, and e, and consider formal vectors of the form

Az) = a\(x)e, + ay(2)e, ,
with a scalar product defined by

[[2@ B@ &z = [ (@@ + Le@h@) a. (15)

If in particular we let
K(x) = f(x)el + g(x)ez ’ Z»(x) = yn(x)el + B,,(:c)e, ’

then we must determine the constants {C,} in the vector expansion

K(z) = Zl C,Z,(2).
Taking the scalar product in the sense defined by (15) we find that

Jo [pf@y,(@) + Iog(x)B,(x)] da :
» = (p= 1, 2, ce). (l(’)
I3 ply:@)* + Lig@}1de ’
The situation here is somewhat special in that for a general fourth order system one

would expect that it would be necessary to introduce four mutually perpendicular unit
vectors and a scalar product of the form

L L
£ Z,(2) - Zy(z) do = f [y + IoBiBs + AMM, + BV, V,] da.

Because the last two terms are absent from (13) one cannot in any real sense say that the
vector solutions ¥, , Vi, M, and B, , corresponding to w} , are orthogonal to each other
for different k’s but only that the first two components of different solutions have this
property. From this point of view the relation which obtains if I, vanishes is even more
special in that then only the first components are orthogonal.’

3. Normal modes of the uniform beam. If the beam is uniform the system (8-11)
can be treated by standard methods. Thus if y(zr) = ye'*, M(z) = Mye*, V(z) =
Voe®, B(x) = Boe'* where y, , Vo, M, and B, are constants, and if the notation a = 1/EI
and b = 1/KAG is used the system (8-11) reduces, after division by €, to

AV, — szyo =0, AMo — Vo + Iw’Bo = 0,
xﬁo_aMo=O, )\y0_60+bV0=0.

This system can have a non-trivial solution if and only if the determinant of the co-
efficients vanishes; explicitly, if

A+ (alo + bV — ape’ + abplw’ = 0, (17)
from which it follows that the roots A satisfy the equation

2\ = —(al, + bp)® =+ {(al, + bp)’w* + daps’® — 4abplw'}'’?.

2M, V may however be eliminated as in §8.
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There are several possible cases associated with this characteristic equation. If w = 0
then all of the roots are zero and the system (8-11) simplifies in that its right-hand
members vanish. It is readily verified that the solution in this special case is the following:
0 0 0_2 0.3 602
y=Ci+ Cx + Csz” + Cix’, ="q
_ 2C5 + 6Ciz
a

If w 0 but > = 1/bl, then A = 0 is a double root and the other two roots are
purely imaginary and conjugates of each other. This case cannot be admitted into the
theory of the system (8-11) since it implies that the relations for ¥V and B in terms of y
that can be deduced from (8-11) are meaningless (cf. [9]).

For reasonable physical beams, the condition «® < 1/bl, is valid for the frequencies
of interest. Under this assumption we obtain the four roots:

M R (C‘; - %b 02) + 2C% + 3C%2.

x17)‘2"‘_”-'-!:')') X37x4==:!:?:€’

where
220} = (Gl + b (0T, — bt + dapsT P (18)

From this it is readily deduced that the most general solution of the system (8-11) must
be, for fixed w, of the form

y = C, cosh vz + C, sinh yz +’Ca cos ex + C, sin ez,

2 2
V= -p—:— {C, sinh yx + C, cosh vz} + pr {C; sin ex — C, cos ex},
(19)

2
— €

bpw’ + v° . bpw’ , .
M=_—a__{Cl cosh yz + C; sinh yzx} + {Ca cos ez + C,sin ez},

bpw’ + ¥° . bpa® — € .
g = - {C, sinh vz + C, cosh vz} +——€—— {Cssin ex — C, cos ex}.

4. Normal modes of the uniform hinged-hinged beam. In order to find the modes of
oscillation in the cases of physical interest, boundary conditions need to be imposed on
the equations (19). By far the simplest case and the only one which seems capable of
complete analytical treatment without approximations is that of the hinged-hinged beam
where y* = M* = 0 holds at + = 0 and z = L. Imposing this boundary condition at
z = 0 we obtain the equations
2
€

2 2 2_
C,+ C, =0, bL""_ai'__'/_Cl_l_b_Pﬁ_

a

C3=0.

Since the determinant of this system has the non-zero value —(y* + ¢)/a, it follows
that C; = C, = 0. It is convenient at this point to simplify the formulas by selecting
the unit of length so that the beam is of length x. The formulas for a beam of arbitrary
length can be obtained by replacing yr and er by yL and €L respectively in the relations
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(20, 21) and n by nx/L in all succeeding formulas. The boundary conditions at z = =
yield the equations
' C,sinh yr 4+ C,sin er = 0,
(20)
(bpew® + ¥))C, sinh yr + (bpw® — €)C, sin er = 0.

In order to have a non-trivial solution the determlnant of this system must vanish. Thus
one obtains the equation
(v* + €’ sinh yr sin er = 0. 21)

Since v and e as defined by (18) are real, the only roots of interest are simply those for
which

vy # 0, € =N, (n=0y1727"°)) (22)
for if v and e were both zero, then w must be zero and the special solution of the system
(8-11) must be employed. It is readily verified that there exist no non-zero constants
Ci (k = 1,2, 3, 4), which permit the boundary conditions to be satisfied for w = 0. On
the other hand, the combination ¥ = 0 and ¢ = n cannot occur, since this would imply
that bl = 1

The corresponding spatial parts are therefore of the form

. bpw® — 17\ .
y = C,sin nz, M=C,.—a— sIn nz,

2 2 — 2
V= C( ) €Os nx, B = C,.(’—L——lmi) cos nx,
n n

forn=1,2 ---.

It should be noted that for the uniform hinged-hinged beam the assumption that
bI,w’ < 1is really unnecessary, for if bIow’ > 1 it follows that all four roots of (17) would
-be imaginary so that the secular determinant would involve the product sin vy sin er.
This product does not introduce any new spatial eigenfunctions.

The values of & which correspond to ¢ = 7 are obtained by setting A = 7e¢ = in in
equation (17) and solving the resulting equation for ». Thus, from

«_|apt (alo + bp)n’:l 2, _n
@ [ abol, © + Goet, = 0 (23)
we obtain
2 = o+ (alo + bo)n’] & {lap + (alo + bAR’]' — dabplm’}”
2abPIo ’

so that corresponding to the spatial functions (22) there are two distinct values of «’.
Let the roots be denoted by =+ «,, and = w,, . We shall assume | w;, | < | ;. |. For
fixed n, we therefore obtain particular solutions to the system (8-11) of the form

y = sin nz{E;, c0s w.t + F.,sin w;.t},

= —cos nz[— pw,/n][E:n €08 wint + Fipnsin w;,t],
(24)
M = sin nz[(bpw?, — 1n°)/a]lE;, c0OS wint + F.,sin w;nt),
B = —cos nx[(bpwi, — 1n°)/n][E:n €0S wint + F;, sin w;,t];
G=1,2n=12 ).



1954] TIMOSHENKO THEORY OF TRANSVERSE BEAM VIBRATIONS 181

Consideration of the second mode which occurs for n fixed seems to have been entirely
overlooked by Timoshenko [2] in his original paper, although he treated only the uniform
hinged-hinged beam.

For different values of n it is clear that orthogonality results, since the general relation
(13) is satisfied trivially inasmuch as the integrals

p '/;, %Y, dz, I, /;’ BiB; dx

vanish separately. We will now investigate how the relation (13) is satisfied for the same
n but for the two modes which correspond to w,, and w,, . In this case, Equation (13) is
explicitly

j; (py1y. + IB\B;) dx = K/o {p sin® nx

1,
Lt — b, + a2) + 0 cos nx} iz,

where K is some arbitrary constant.
The coefficient of cos’nz in this expression can be simplified by noting that it follows
from (23) that

ap + (al, + bp)n’?

2 2
wln + w2n - aprO )
and that
WO = n’ .
InWin abPIo
Thus
I
77‘2’ 2p2wf,‘w§,, - bpnz(wfn + w:,.) + n4] = —p
so that

L4

f (pty2 + IoBiBs) dx = Kpf (sin® nx — cos’ nz) dz = -—Kpf cos 2nx dz = 0.
(1] ) 0

Thus the modes are orthogonal in accordance with (13) if they correspond either to
different n’s and the same w or to the same n and to different w’s. It is necessary to use
both sets of modes for a fixed n in order to obtain a solution to the general initial and
boundary value problem.

5. Comparison of universal curves for hinged-hinged and free-free beams. In order
that the shear and rotary inertia frequency effects may be estimated for any uniform
hinged-hinged beam, it is convenient to introduce dimensionless parameters. Such a
set of parameters has already been introduced by Howe et al. [9] and an electronic
differential analyzer has been used to compute a set of curves showing the effects of
rotary inertia and shear on a uniform free-free beam. Since these authors have kindly
granted permission to reproduce their curves, it seemed expedient to use the same param-
eters and to compute the corresponding values for the uniform hinged-hinged beam
for which the exact theory presented here is available.
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The dimensionless parameters introduced by Howe et al. were defined as follows:
S = EI/KAGL?, N = KGJ/E, N\ = wL*p/EI)'*.

If the effects of shear forces and rotary inertia are both negligible, then S = ¥ = 0.
This will be the case if the length of the beam is very long compared with its thickness;
such an idealized beam is often termed ‘‘infinitely long”. If A, is used to denote the value
of the appropriate mode of the “infinitely long’’ beam, the ratio N\/A, is a convenient
measure of the change in frequency caused by values of S and N different from zero.

For the uniform hinged-hinged beam, A, may be computed directly from equation
(23) which may be written in the form

MSN — [1 + 81 + N)ym* =" ]\ + m'z* = 0, (m=12 --), (25)
so that
M = 2N)VIS8T + 871 + N)ym’s®
+ {[S7? + S7'(1 + N)m’»’)* — 48 *m*x*N}/*]'/2. (26)

The corresponding values of A, are computed from (25) by setting S = N = 0 so that
Ao = m21l'2.

The smallest values of 100 A,/\, for a particular mode are plotted versus 1 'S in
Figure 1 for values of N = 0, 0.1, 0.2, and 0.3. The corresponding values for a uniform
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free-free beam as given in Howe et al. [9] appear in Figure 2. Figure 3 is a similar graph
for the values of N\,/X; as determined by the plus sign in equation (26) for the uniform
hinged-hinged beam.

These curves may be used to estimate either separately or simultaneously the effects
of shear and rotary inertia upon the frequency of vibration. It is apparent from its
definition that S increases with an increase in flexural rigidity, and decreases with an
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increase in shear rigidity or an increase in length. It is therefore a parameter capable of
describing the relative importance of shear rigidity for beams of given flexural rigidity
and of given length. On the other hand, the expression for N may be written as

N = KAGI,/EIp (27)

and is therefore seen to increase with an increase in shear rigidity or rotary inertia and
to decrease with an increase in flexural rigidity. Thus, N is a suitable parameter to measure
the relative effect of rotary inertia for beams of given shear and flexural rigidity. Alter-
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nately, since I, is directly proportional to the density, it may be used to measure the
relative importance of the size of the cross-section.

6. The initial value problem for the hinged-hinged beam. An examination of the
system (2-6) shows that the general initial value problem requires the specification of
y*(z, 0), y%(z, 0), 8*(x, 0), and B%(x, 0) in addition to the boundary conditions appropriate
to the type of beam under consideration. Let us write

y*(=, 0) = fil®), B*@x, 0) = g:(a),

y‘;(x; O) = f2(x)’ B":(x) 0) = gz(x)-

Then, because of the linearity of the system (2-6), a superposition of the solution (24)
will satisfy this sytem and the boundary conditions for the hinged-hinged beam. Such
a sum is of the following form:

(28)

2

y*x, 1) = > D sin nz[E;, cos wit + Fi,sin w;,t],

i=1 n=1

2 ©

Bz, £) = 2 D cos nx(bpw’i, — n°)n " [Ein c0S wint + Fi, sin w;nt],

i=1 n=1

where M*(z, £), V*(z, t) can be expressed in a similar fashion. In order to satisfy the
initial conditions (28), the coefficients E., , F;,, (i = 1,2;n = 1,2, ---), must be de-
termined from the following series representation:

fi(x) = X Ey.sinnz 4+ Y E,, sin nz,

n=1 n=1
0:(@) = — X Ey(bpwi, — n')n™' cosnz — Z E..(bpws, — n*)n”' cos nr,
n=1 n=1
f2(x) = Z (“’lnFl») Sm nx + Zl (wangn) Sm nr,
n=1 n=
goz) = — Z (wlnFln)(bp“ﬁn - 77r2)n.l cos nr — Z (w2nF2n)(bpwg.’n - nz)n—x COs nx.

n=1 n=1

Although the coefficients E,, , E., , F1., and F,, can be evaluated in this case directly
by the usual Fourier methods, the orthogonality relation (13) and its interpretation
offers the advantage of furnishing these values directly without the necessity of solving
two sets of algebraic equations. Thus, for example,

B =2 fo [f1(z) sin nx — Im™"p""(bpwi, — n)gy(2) cosnz]dx
n 1 + P ln_zlo(bpwl,, - n)

If the usual Fourier coefficients are employed one finds

_ 2 [J [f,(2) sin nz + n(bpws, — n°)” gl(x) cos nx] dr

E,. =
! T bp(wzn O-’ln) [bP(“’zn -n )]

The equality of this with the first expression for E,, follow directly since

n/(bp‘*’gn - nz) = _Iobp(wgn - nz)/npl
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and
1 4 (n* — bpwi,)/(bpws. — n°)
= 1+ I(bpwi; — n°)*/pn’,

in virtue of the sum and product of the roots w2 and w3, of (23).

The rigorous justification of the above expansions as solutions of the initial value
problem would, in general, involve a proof of the completeness of the set of eigenfunctions
and a study of the convergence properties of these expansions. Here, because of the
identity of these expansions with those of usual Fourier sine and cosine series, it is well
known that the set of functions is complete and many conditions sufficient to guarantee
the convergence of such series are, of course, known. Moreover, since the general solution
of the system (8-11) for w = 0 does not admit a special solution satisfying the boundary
conditions and allowing V* and 8* to be constant, the identity of these expansions with
those of Fourier series can be used to deduce the fact that the functions ¢,(z) and g,(x)
cannot be specified arbitrarily but must satisfy the additional conditions that

(bpwgn - wfn)/(bpwgn - nz)

fg..(x)dx=o fori =1, 2.
0

This conclusion is however a function of the boundary conditions. For example, for a
free-free beam, the solution 8 = constant is permitted by the system (8-11) if w = 0.
For the uniform hinged-hinged beam it is clear that these constraints on g;(z) are merely
symmetry requirements since 8 is the slope due to bending.

7. Beam problems involving external forces and moments. If an external force
F*(x, {) per unit length and an external moment G*(z, f) per unit length is allowed to
act on a non-uniform beam, only the first two differential equations of the system (2-6)
are modified and they become

’y*
P 3 tz

9°8*
FYs

ovr _ _ oM x = g+
+ oz —F*(xrt)y or +Io +V ‘—‘G(x: t)’

The solution of any problem of this type may be obtained by the superposition of
solutions of the corresponding problem in which the external forces and moments are
zero. It is merely necessary to seek solutions of the form

v = fo V@ t — o) ds, V*= fo Vi(z, ¢ — o) do,
(29)
t t
M= [ M@ t—ade, =] 8@ t-0ods,
) 0
and to impose the following initial conditions on the functions y’(z, 7) and §'(z, ) where
T=1— g
yl(x’ 0) =0,
yl(xy O) = y:(xy t— 0') |a-¢ = F*(x’ o’)) (30)
B’(xy 0) = O; :(x) 0) = B’(Z, t— 0') ‘0-1 = G*(xy 0')-
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It now follows that the functions y’, M’, V' and B’ satisfy the free system (2-6) and that
if they satisfy a given set of boundary conditions then the function y*, M*, V* and g*
defined by (29) will satisfy the same boundary conditions. In order to determine the
functions 3/, M’, V' and B’ it is merely necessary to solve a special case of the initial
value problem corresponding to the given set of boundary conditions and the initial
conditions (30) as a function of the parameter.
8. Beam vibrations with time dependent boundary conditions. In order to reduce
a beam problem for the system (2-6) which involves time dependent boundary conditions
to manageable form, it seems simplest to eliminate M* and V* from the system (2-6)
to obtain the equations
2, % *
L, 89 = » 2o %[mw@t—%ﬂ]=m
a°8*
t2

+KAG(*—"—y*)=0

*
L,(y*, B*) = — % (EI %B;) + I, Fy

and the following expressions for M* and V*:

a8* ( 6y*>
* = * * __ -7
M_EIa:c’ V* = KAG\B 2z )

Now if y* and 8* are decomposed to the relations
y* =yt +ut, B* =B+ 6
these become
Ly(y%, 8% = —Li(y%, 8%, Lyt , B = —Li(yt, 8Y, @31)
M* = Mt + M%, V*=V5+ V%. (32)
If, following Mindlin and Goodman [11], one sets

yt = [H(Dh(2) + f2(D)hs(2), ¥ = g(Oki(x) + g.()ks(2),

where the functions f;(z), g:(x), h:(f) and k,(f) are arbitrary for ¢ = 1, 2, it is always
possible to choose these eight functions in such a way as to reduce the boundary value
problem for y% , 8%, V%, and M% to one involving time independent boundary con-
ditions, known initial conditions, and known external forces and moments as given by
the right-hand sides of (31, 32). This problem can in turn be decomposed into two
problems of the types created in §6 and §7 respectively and thus a general solution
can be obtained by superposition.
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