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LATERAL VIBRATIONS OF TWISTED RODS*
By

ANDREAS TROESCH (New York University),
MAX ANLIKER and HANS ZIEGLER (Eidg. Techn. Hochschule, Zurich)

1. Introduction. Figure 1 shows part of a straight rod which is twisted, like a

Fig. 1. Twisted rod.

propeller blade, in the unloaded state. The bending vibrations of such a rod have been
dealt with by H. Reissner,1 who derived the differential equations under most general
assumptions, without, however, to the best of our knowledge, proceeding to their solution.
Subsequently, a number of authors have treated particular cases by approximate or
experimental methods.2 In view of the possibilities offered by modern computers, the
problem actually is ripe for rigorous treatment. It is solved in this paper for an isotropic,
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homogeneous rod built in at one end, under the assumptions that the mass per unit
length, p., the twist per unit length, to, and the principal flexural rigidities, a, 13, be constant
(one of them being taken infinitely large).

The eigenvalue problem, which is easily established by a method recently used in a
stability investigation,3 is of 8th order. The eigenvalue equation is obtained by equating
an 8-row determinant to zero, the elements of which contain the eigenvalue in the form
of an exponent. For small and large values of the total twist, 4>, the natural frequencies
of the rod can be computed by development. In the intermediate range, they have been
evaluated by means of the sequence controlled computer of the Institute for Applied
Mathematics of the Eidg. Technische Hochschule.4

2. Reference frames. Figure 2 shows the deflection curve of an originally vertical

X
Fig. 2. Coordinate sj'stems.

rod, S denoting the center of gravity of a generic section given by the arc s. The curve
can be referred to three different coordinate frames, viz.,

(i) the fixed frame x, y, z, defined by the principal axes of an end section and the
axis of the straight rod;

(ii) the principal frame £, tj, f, defined by the principal axes of the section at s,
together with the tangent of the deflection curve;

(iii) the raised frame u, v, w with vertical axis w, obtained from £, 77, f by rotation
about the nodal line, i.e. the horizontal line in the plane £, ?/ passing through S.

Let t denote the unit vector along the .tangent of the deflection curve, while a is
an arbitrary vector the first two components of which are small. Provided that the
inclination of the deflection curve is small, the components of a in the last two reference
frames are connected by the relations5

<z„ = ctj tuat , d, = ct, -(- i.dj- , aw — Of . (2.1)

3H. Ziegler, ZAMP 2, 268 (1951).
4The authors are indebted to the Director of this Institute, Prof. Dr. E. Stiefel, who put the com-

puter at their disposal, and to Prof. Dr. H. Pallmann, President of the Schweiz. Schulrat, for granting
them very favourable conditions. Also, they are obliged to Dr. H. Rutishauser for valuable advice with
regard to the establishment of the computing program.

5These follow at once from Fig. 2; see also H. Ziegler, loc. cit., (4.1).
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If, for the present, s is interpreted as a measure of time, the principal frame slides
along the deflection curve with unit speed. Its state of motion consists of a translation
of velocity t and of a rotation of angular velocity k + cot, provided that co = d<p/ds
denotes the angle of twist per unit length of the unloaded rod, while the components
of the deformation vector k(k£ , k, , /cr) represent in turn the curvatures of the deflection
curve [measured in the principal planes r?, f and £, f] and the elastic twist per unit length.
In the raised system the components of k are, according to (2.1),

Ku K| | , Kv ~~i Kw j (2.2)

hence, k + cot has the components

K( + tu(Kt + Co), K, + tv(Kt + Co), Kj. + CO.

The first two components describe the motion of the principal frame with respect to
the raised one, whereas the last component represents the rotation of the raised frame.

3. Differential equations of motion. Let k denote the external force and m the
external moment, both taken per unit length. If K and M represent the internal forces
in section s, the conditions of equilibrium for an element of unit length are

^ + k = 0, y + tXK + m = 0. (3.1)"as as

Since the angular velocity of the raised system is u(0, 0, kw + co), the equilibrium con-
ditions, for an observer taking part in this motion, are, instead of (3.1),

? + uXK + k = 0, ^ + uXM + tXK + m = 0. (3.2)as as

Resolving them and denoting derivatives with respect to s by primes, we obtain

Ki - (*„ + u)K. + K = 0,

K', + (*. + co)K. + k, = 0, (3.3)

Kl + kw = 0;

Ml — (kw + co)Mv + t,Kw — t„K, + mu = 0,

M'v + (km-|- co)M„ + twKu — tuKw + mv =0, (3.4)

+ tuKv — t,Ku -)- rriy, = 0.

Denoting by a, (3, y the flexural rigidities with respect to the principal axes and the
torsional rigidity, we have further, provided that the strains remain small,

Me = an( , M, = i8k, , Ms = 7Kf . (3.5)

When the rod executes free vibrations, k is the inertia force per unit length and m
its moment. For small vibrations, ku , k, and mw can be treated as small quantities of
the first order. Excluding longitudinal vibrations and the higher modes of flexural
vibrations, we are justified in replacing s by 2 and in suppressing the quantities
k„ , mu , m, , since they are small of higher order. So is Kw , while Ku , K, , Mu , M, ,
Mw , tu , t, , k„ , k, , kw are of the first order and tw = 1.

6See, for instance, H. Ziegler, loc. cit., (2.1).
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If terms of the first order alone are retained, the third equation (3.3) becomes trivial.
The third equation (3.4) reduces to M'w + =0, thus, torsional vibrations can be
treated separately. Excluding them, we have mw = 0, M„ = 0. From (2.1) follows
rar = 0, Mj = Mu , Mv = M, , Mt = 0 and, owing to the third equation (3.5),

fC£ = Ku , K, = K„ , Kf = kw = 0. (3.6)

Thus, the four remaining equations (3.3), (3.4) reduce to

Ki - coK, + ft, = 0, Mi - coM, - K, = 0,
(3.7) (3.8)

K: + 0>KU + ft, = 0, M:+ uMu + Ku = 0,

while the first two relations (3.5) may be replaced by

Mu = a.Ku , M, — /3k, . (3.9)

According to Section 2, the angular velocity u* of the principal frame with respect
to the raised one has the components

+ 4(*f + «), Kv ~t~ + <°)> 0.

Owing to (3.6), it can be written u*(k„ + iotu, k, + wt, , 0). For an observer moving with
the raised frame

dt * vy 4.5 " U x
hence

Ku — —t',— (ilt„ , K, = ti — 0>2, . (3.10)

If, finally, r denotes the radius vector of S (Fig. 2),

. rfr , . .
ds '

thus
L — K ~ wr, , t, = r', + wru . (3.11)

Eliminating ku , k„ and tu , t, from (3.9) to (3.11), we obtain the bending moments

Mu = —a{r" + 2wri — «2r,),

M, = (3(K' - 2wr', - w2r.)

and, by substitution in (3.8), the shear forces

Ku = -PK" + (a + 2/3V/ + (2a + /S)«Y: - aa>3r, ,

K, = -ocr'," - (2a + ffyoir" + (a + 2/3)wV, + (SwV. .

Introducing them in (3.7), we have

S5r{: - 2(« + PW," - 2(2a + + 2(a + PWK + /3<A, ~ K = 0,

+ 2(a + 0)w'u" — 2 (a + 2 P)ur" — 2(a + P)wr'u + au>*r, — ft, = 0,

i.e. a system of 8th order for ru , r, .

(3.12)

(3.13)

(3.14)
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Since the rod is loaded only by its inertia forces,

ku = -tifu , k, = —nr, ■ (3.15)

Substituting (3.15) in (3.14), we obtain the partial differential equations of the flexural
vibrations. Taking

r„ = U cos at, rv = 7 cos Kt (3.16)

they yield, for the eigenfunctions, the differential equations

PU" - 2(« + 0)o)V'" - 2(2a + 0)uU" + 2(a + P)a>3V' + (/fo4 - n*)U = 0,
(3.17)

aF' + 2(« + fiwU'" - 2(a + 2/3)a>27" - 2(a + |8)u?U' + (aa>4 - mk2)7 = 0.

If the coordinate z is replaced by the angle of rotation of the corresponding section,

<p = a>z, (3.18)

we have finally, denoting derivatives with respect to <p by primes,

pu,T - 2(a + /3) V'" - 2(2a + fi) U" + 2(« + ft 7' + /?(l - = 0,

(3.19)
aViv + 2 (a + 0)U"' - 2 (a + 2/3) F" - 2(a + 0)U' + a(l - ^jF = 0.

\ ao) /

4. Boundary conditions. The eigenfunctions are determined by the differential
equations (3.19) in connection with the boundary conditions. In the case of a rod built
in at the lower end the displacements ru , r, of section <p = 0 are zero; thus, by (3.16),

U = V = 0. (v> = 0). (4.1)
Besides, for <p = 0 the tangent of the deflection curve is vertical; hence, by (3.11), (3.16)
and (4.1),

U' = V = 0, (fp = 0) (4.2)
primes indicating derivatives with respect to <p.

If I denotes the length of the rod and <f> = col its total twist, the bending moments
(3.12) and the shear forces (3.13) vanish for <p = cf>; hence,

0(U" - 2V' - U) = a(V" + 2U' - V) = 0, (<p = *) (4.3)
and

P(U'" - 27" - U') = «(7'" + 2U" - V') = 0. (<p = *). (4.4)
The eigenvalue problem defined by (3.19) and (4.1) to (4.4) is somewhat similar to

the one of the corresponding buckling problem7; yet, since its order is twice as high,
it is more complicated.

5. Solution. The fundamental solutions of (3.19) are of the type

U — A exp (\<p), V = B exp (X^). (5.1)

7H. Ziegler, Schweiz. Bauzeit. 66, 463 (1948).



168 A. TROESCH, M. ANLIKER AND H. ZIEGLER [Vol. XII, No. 2

Substituting them in (3.19), we obtain

A - 2(a + £)X(X2 - 1)5 = 0,[/3X4 - 2(2a + /3)X2 + /s(l - gf)

2(a -f- /3)X(X2 — 1)^4 + |^aX4 — 2(a + 2/3)X" -f- a^l — = 0

(5.2)

and the characteristic equation

X4X-+ 4X-+ [e - (1 + i)

+ 2[2 + 3H)£>' + (1-S)(1-&)-°- (5'3)
Byr(5.2), any one of its eight roots \k yields a ratio

B* = X4 - 2[1 + 2(a/p)]\l + 1 ~ (m*7M
Ak 2[1 + (a//3)]\k(Xk - 1) (5.4)

and therefore one of eight fundamental solutions. The general solution is

U = J2 exp (\k<p), V = J^Bt exp (X^), (5.5)
k-1 i-1

the coefficients A* , Bk being determined by (5.4) and by the boundary conditions
(4.1) to (4.4), i.e. by

y. At = 0, /3 [(^t 1)^4 2Xjfij;] exp (X*<£) = 0,
i i

53 = 0) $ 23 [(^* l)^4.t 2\kBk]\k exp (\k<t>) = 0,
i i

(5.6)
E S* =0, a X [(Xj - 1)B4 + 2XtA4] exp (\k<f>) = 0,

1 1

£ = 0, a Z [(Xf - l)5t + 2X*At]Xt exp (Xt0) = 0.i i
In order to simplify the problem, we restrict ourselves, by the limiting process

13 —* co ? to the most interesting case of a perfectly narrow cross section. If this process is
carefully applied, (5.3) reduces to

(X2 + l)4 - (X4 - 6X2 + 1) ^ = 0; (5.7)
aco

(5.4) yields

Bk = At , (5.8)
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and the system (5.6) becomes

^ A (\l+ l)2 + (hk2M „ v ,=0, X) 72 i exP (X*<£Mt = 0,
1 1 — ±

r, , ^ (Xi + l)2 + (mk2/«co4) , ^ ,
2-i Xi-4* — 0, 2./ \2 1 Xi exp (\htf>)Ak — 0,

1 1 A* 1

t Ak = 0, £ exp MAk = 0,
l A* 1 A*

£ (X2 - l).4t = 0, ± (X2 + l)2 exp (Xrf)A. = 0.
1 1

Equating the determinant of (5.9) to zero, we observe that (5.7) is solved by pairs of
roots, = —X5 , • • • , X4 = —X8 . We further make use of (5.7) and of the fact that
any row may be supplemented by a linear combination of other rows. Thus, we obtain
the eigenvalue equation

1 0

0 X;

0 i

x? 0
(1 Xj)2 cosh Xi0 (1 -f- X])2 sinh \i<f>

(1 + X?)2 • , , , (1 + X?)2 , , ,   smh Xi0    cosh X^
Xi Ai

3 - X? , . , 3 — X? . , , ,1 _l_ ̂ 2 cosh X,0 1 -|- \2 sinh X^

1 - 3X? . , x . 1 - 3X2 .. , , ,
2\ Sinn A\(p \ /1 1 \ 2\ cosh ai<p

= 0, (5.10)

X,(l + x*)"Xj(l + X2)

the three remaining double columns being obtained from the first one by substituting
X2 , X3 , X4 for Xj .

In order to evaluate (5.7) and (5.10), we introduce, in place of the natural frequency
k, the quantity

2 74
4 VK t /c 1 1\m = ——, (5.11)

a

denoted by I:414 by some authors. According to S. Timoshenko8, the eigenvalue equation,
in the absence of twist, takes the simple form

1 + cos m* cosh m* = 0, (5.12)
3. Timoshenko, Vibration Problems in Engineering, Van Nostrand, New York 1935, p. 234.
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yielding the eigenvalues

m* = 1.875, m* = 4.694, m% = 7.855, m\ = 10.996, ••• (5.13)

Owing to (5.10) and the relation </> = id, the constant in (5.7) is

hk m 4 1
~i = —i = V \ (5-14)aco (f>

hence, (5.7) can be written

(1 + X2)4 - (1 - 6X2 + X>4 = 0. (5.15)

In order to obtain the natural frequencies
f \l/2

(5.16)
m] (oiYKi = TVj

in the presence of twist, it is best to start from a given value of p and to calculate the
corresponding roots X! , • • • , X4 of (5.15). Introducing them in (5.10) and solving for
<t>, we obtain a sequence of values of the total twist, every one of them, by (5.14), yielding
a value

m = pl>. (5.17)

By repetition of this process (cumbersome since the real or complex character of the
roots X* depends on the magnitude of p), the functions ?%(<£), to2(0), • • • can be evaluated.

6. Computer work. The process described above has been carried through by means
of the sequence controlled computer mentioned in 1. For any of 12 values of p (chosen
in the interval 0.06 g ^ 26,000) 9 to 18 values of the determinant (5.10) were com-
puted. The roots of (5.15) were introduced right from the start; the angular functions
of (j) near the probable zeros were taken from Tables and transferred to punched strips
for use by the computer. The determinant was evaluated by the method of Gauss and
Banachiewicz9. Controlled by a cyclic program, the computer worked nearly without
supervision, printing the results from which the zeros were obtained by interpolation.

Tables 1 to 4 give the values calculated for m^), • • • , m4(<£), together with their

TABLE 1

<t> mf(0)

0 1,875 3,5156
0,1477 1,8755 3,51s
0,6003 l,879o 3,53i
1,6209 1,903o 3,62!
2,4328 1,9347 3,743
2,9273 1,957$ 3,832
4,0638 2,0112 4,045

'See R. Zurmuhl, Matrizen, Springer, Berlin, Gottingen, Heidelberg 1950, p. 249.
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TABLE 2

<t>

0
0,3599
0,6775
0,9566
1,2230
1,5869
2,1245
2,5730
2,7629
3,0656
3,4585
3,9630
5,0854

TABLE 3

TABLE 4

mlfo)
22,03
20,8,
18,6^
16,5o
14,65
12,5,
10,3,
9, la
8,7o
8,14
7,5,
7,0,
6,3,

<t>

0 7,855 61,70
0,6019 7,64, 58,4,
1,1400 7,26, 52,7,
1,6225 6,88, 47,4,
2,0898 6,54, 42,7,
2,7348 6,115 37,40
3,7083 5,627 31,6,
4,5604 5,35< 28,6?
4,9419 5,27, 27,86
5,5909 5,20, 27,07
6,5430 5,20, 27,0s
7,9359 5,30, 28,17

10,857 5,37, 28,87
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squares which, according to (5.16), are proportional to the 4 lowest natural frequencies.
Fig. 3 shows the corresponding m(<£)-curves, points taken from Tables 1 to 4 being
marked by small circles.

0° 90° 180° 270° 360° 450° 540° 630° 720° 810° 900° 990°

Fig. 3. Frequency curves.
Circular Frequencies k,■ - (w^?/P)(a:/^<)l/,

I: length of the rod a: flexural rigidity n: mass per unit length <p: total twist

For higher modes, the numerical work is complicated by the appearance of differences
of large numbers. Yet the computer (designed for 6 significant figures) would yield
more than the 4 curves of Fig. 3.

7. Expansions. For large values of -p, i.e. for small values of the total twist <£, the
roots of (5.15) can be developed in the series

^ = + X* = P-|r"' = V2=F 1 ••• . (7.1)

The corresponding expansion of (5.10) is

(1 + cos m cosh m)

+ \ J^9 sin m sinh m — m(cos m sinh m + sin m cosh m) J • • • =0. (7.2)

Developing also

m = m* + \ m** • • • , (7.3)
P
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we obtain

(n 1 o m* + m*\ + m*\ " 13 T cot ~2~J cotT'

-(9+l3f
(7.4)

according as m* is an odd or an even root of (5.12).
Evaluating (7.4) and (7.3) for a number of values of p (chosen sufficiently large)

and making use of (5.17), we obtain approximations of the frequency curves m,(<p) for
small values of (marked, in Fig. 3, by small squares). For 4> = 0, the functions m,- are
stationary; with increasing <j>, however, increases slightly while m2, m3 , ■ ■ ■ decrease.

For small values of p, the roots of (5.15) are

XI>2 = i{\ =F q • • •), ^3,4 = =Fi + q • • • . (<? = — j 189)'

The corresponding expansion of (5.10) is
2

(1 + cos n cosh n)2 — ~ (cos n sinh n — sin n cosh rif = 0, (7.6)

where

n - ^ = q*. (7.7)

Developing

n = n* + w**5 '' * > (7-8)

we find that n* satisfies (5.12) and that n** = ±1/2. Thus, (7.7) and (7.8) yield

" = 2^Tn*"" (79)

It follows from (7.9) that, for <t> —> °°, two frequencies at a time tend to the same
limit. The corresponding values of m, according to (7.7), are

Mi = </2n% (7.10)

or, evaluated by means of (5.13),

Mi = 2.230, M2 = 5.582, M3 = 9.341, ••• . (7.11)

According to (5.16), these limits correspond to the natural frequencies of an untwisted
rod of flexural rigidity 2a.

In Fig. 3 the expansions for <t> —» (like those for 0-^0) are marked by small squares.
For the fundamental mode, the expansions for </> —> 0 and <£—><» approach each other
closely. Evidently, they would suffice for many practical purposes. As to the higher
modes, however, there remains a gap of increasing width between the two expansions
(filled by the computing process described in 6). Particularly the expansion for 4> —> 0
is reliable only for very small values of the total twist.


