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NUMERICAL METHODS IN DIGITAL REAL-TIME SIMULATION*

BY
H. J. GRAY, JR.
University of Pennsylvania

1. Introduction. Under the sponsorship of the Office of Naval Research, Special
Devices Center, the University of Pennsylvania conducted a study to determine the
feasibility of building a digital real-time simulator for a system described by thirteen
first-order non-linear differential equations. To achieve this, it was found necessary to
improve either the speed of the machine [1] or the quality of the method of solution.

The present paper is an introductory one and deals with the latter problem and
especially with the build-up of errors. Essentially the paper falls into two parts. A.
Finding the characteristic equation associated with the difference equation by which the
differential equation is replaced for purposes of numerical solution [2] B. Solution of
the characteristic equation by conformal mapping. A diagram is given showing the
method of solution in a case of practical interest.

2. Separation of round-off and truncation errors. This paper, being introductory
in nature, will consider only linear constant-parameter systems of ordinary differential
equations. Assume that the differential equations have been replaced by linear difference
equations. Round-off errors may be treated as perturbations introduced at each step.
Since the system is linear the propagating effect of a perturbation satisfies the same
difference equations as the precisely computed solution and, if desired, the propagating
effects of the individual perturbations may be summed and added to the precisely
computed solution to obtain the actual computed solution.

3. Derivation of the characteristic equations. With the knowledge that the precisely
computed solution and the round-off errors satisfy the same finite difference equation,
it becomes important to study the properties of these difference equations.

Consider the system of linear constant-parameter differential equations
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dx./dt = Z a;;x; ; 1= 1, 2, ety k. (1)
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For simplicity in exposition, 4 will be assumed to have real elements and distinct

characteristic values.
A class of quadrature methods which have proven to be useful in real-time simulation
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involve in one time interval, when applied to Eq. (1), the sequence of computations
given below. (Methods [Oyx , Crel)

N M
Oyu : (x)n = E: a;io(x)il; + h Z; b;o(dz;/dt)a-; ,
2
Cro @ (z)

R Q-1
Z; aie(zi),fii +h Zo bic(dxi/dt)r’a—i ’
where

k
(dz./dt); = 2:1 a;{(z;)a ; i=1,2 -,k

A constant time interval, k, is assumed and the a;, , b;0 , a;. , and b;, are assumed to be
known constants as are N, M, R, and Q. The symbol (z,); denotes “the 7th variable =
evaluated at time { = jh, j an integer.” The primes and double primes serve only to
identify the two classes of the numbers (z,); , namely the results of the operations Oy
and Crq . :
Equations (2) when expressed in matrix form become
N

M
Oxn: Xi= E a;X:l; + h Z biAX:_;,
i=1

i=1

‘ 3
R Q-1

Cro : XM=Y a;.X!t;+h X b AX.;,
i=1 i=0

where X/ , X/’ are column matrices with elements (z;)} , (z;);’ respectively.
Proceeding in standard fashion [3], assume

X! = Re X{ exp (nw), X! = Re X' exp (nw), 4

where X.; and X’ are column matrices having complex elements and w is as yet an
undefihed complex number. Substitution of (4) into (3) yields, after elimination of X{’,

{150 e -ima ]| 5 aicom = 1| | 35 000 exp (=0

M
+ B = h ) boexp (—jw)A}Xs -0, ©

i=1
where E is the unit matrix and 0° is the null matrix.

For a non-trivial solution of Eq. (5) to exist, the determinant of the quantity in the
curly brackets must vanish. This determinant is found to be the characteristic determi-
nant of the matrix A, with its characteristic values X equal to functions of exp w. Simplifi-
cation of the rather formidable expression obtained in this way yields the characteristic
equation

z = {la + 8517, (6)

where z = M, p’ = exp ( — jw) (see section 4);
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Similarly it can be shown that for repeated closures using Crq , z = ¢ if | bohA | < 1;
for Oy used alone, z = [1 — a]87"; and for the Runge-Kutta method [4],

4

expw = »_z'/jl. @
i=0

4. Solution of the characteristic equations. Detailed specifications on the quality
of simulation will not be given here. However, the accuracy requirements are generally
considerably looser in simulation than in other scientific computations such that the
conformal mapping method of solution given below has been found to be entirely
adequate.

Any general solution z; of Eq. (1) may always be written as a linear combination
of the functions exp (\;t), 7 = 1,2, --- , k where the \; are the (distinct) characteristic
values of the matrix A. The A, are called the “complex frequencies” or sometimes just
“frequencies’” of the system described by Eq. (1). By exploiting the parallel nature of
the theories of linear constant-coefficient differential and difference equations, it is
possible to define and talk about the “frequencies in the computed solution’. Hence,
determination in the computed solution of the frequency having the largest real part
enables a determination of at least whether or not a given computed solution of Eq.
(1) will decay to zero (stable) or grow indefinitely (unstable). This is the source of the
name ‘“‘stability charts” given to the conformal maps to be derived.

Equation (7) yields as roots, given an unique value of 2, a set of values of w differing
by integer multiples of 27i. However, (see Eq. 4) since exp n (w + 2wxil) = exp nw,
n and [ being integers, it is sufficient to consider only one value of w. That value satisfying
the inequalities —m < Im w < = will be chosen and will still be denoted by the symbol
w in the following.

Let

w = wh. (8)

Equation (8) defines p, the frequency in the computed solution corresponding to A, the
frequency in the true solution.

Equation (7) being in a form in which it can be considered solved will not be discussed
further. The remaining characteristic equations are written in the form z = f(w). How-
ever, they may be put into the form

Ag" 4+ A" 4+ - 4+ 4, =0,
A, # 0,
r=p = expjw, 9

where the A; are first degree polynomials in z = Xh. Corresponding to a chosen value of
\, Eq. (9) has n roots r, which When arranged in order of decreasing magnitude are [5]
Ty, Tay vvr y Ta

Since w = log, r, one has w, , w, , -+ , w, where Re w;, > Rew, > --- > Rew,
and — 7 < Imw; < .

It is evident from the remarks made earlier about stability that w, is of interest.

A number of methods of finding w, , given A, were investigated including numerical
extraction of roots and expansion of roots in a power series in Ak but these were dis-
carded in favor of the conformal mapping method for the following reasons.
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(a) w, as furnished by the conformal maps (stability charts) is sufficiently
accurate for the simulation application.

(b) The computation required to prepare a stability chart is relatively routine
and the amount of it is not much greater than that required for one root extraction
by standard methods. Furthermore, the stability chart effectively solves all root
extractions of practical interest for the given quadrature method.

(¢) The stability charts furnish a convenient means of comparing the merits of

the different quadrature methods.

In order to simplify the exposition, the following assumptions will be made con-
cerning the nature of the characteristic equation, z = f(w).

(a) zis a single-valued analytic function of w except at a finite number of poles.
(b) w is a multi-valued function of z. The restriction —7 < Im w < 7 makes w
assume only a finite number of values for any one value of z.

The stability charts are obtained by mapping the w plane into the z plane using the
characteristic equations. Essentially what this does is to determine one root for each z.
Whether or not this is the root, w, , is determined- as follows: given z = f(w) it is well
known that there may exist for a fixed value of z = 2, , a root w, which has the same real
part as w, . The trio of points 2z, , w; , w, will be defined to be a “point on a branch
contour”. Hence, a “branch contour’” will be the locus, if it exists, of “points on a branch
contour’” in both the z and w planes. Furthermore, every branch point lies on at least
one branch contour.

Fix z = 2} and determine the roots w of f(w) = z; (assume that all the roots are
distinct). Denote the point in the w plane defined by the w, as wy .

It can be stated that if a point w*, which lies inside a simply connected region con-
taining w} but not containing any points on a branch contour, is mapped into the z
plane by z* = f(w*) then one root of 2* = f(w) is w*, and for all other roots w, , Re
w, < Re w*.

This follows directly from the definition of “points on a branch contour” and the
theorem [5] that the roots w of z = f(w) are continuous functions of z.

Y v
Z PLANE W -PLANE
ws
P Z) W)
C c
X . w

F1c. 1. Determination of points on a branch contour

To find points on the branch contours, let w = u 4 @ follow C in Fig. 1. Its image
z = z + 1y may follow C, . The crossover point 2, and its images on C lie on a branch
contour by definition.

The characteristic equation, z = f(w), for [O,, , C,,] with coefficients given in (10) is
mapped in the rough in Fig. 2. The contours in the w plane are the v = constant lines,
with » (and ) taken at intervals of 0.1. Symmetry and periodicity restrict the required
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range of vt0 0 < v < 7. For z = 0, it is found that w} = 0. The w plane maps into the
z plane five times, but since only the dominant root, w, , is of interest, four of the five
coverings of the z plane have been discarded (some of them in the sense of not even being
computed) to obtain Fig. 3.

041 . Gy = ‘_10/3 C.“ L, = 48/25

Qzo = 6 a,. = —36/25
Qo = — 2 a. = 16/25 (10)
Qg = 1/3 a,. = — 3/25
bo = 4 bo. = 12/25

5. Computations. One way of using the charts is as follows. Given the system of
differential equations, determine the frequencies, A, in the system. Spot the points
z = \h on the stability chart for the quadrature method to be used and read off the
values of w = ph, a procedure rigorously correct only for linear constant-parameter
systems.

The process will be illustrated by formal application to the linear varying-parameter
system described by

dz/dt = y

(11)
dy/dt = —3y — (6.25 + 2.4t + 0.368)z + f(f)
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Fig. 3. Stability chart for [O4 , Ca)

whose solution was computed for two cases as follows using method [O,, , C,,] (Eq. 10).
(@) b = 0.1, f() = = 0.000xxxr where the zzz were random numbers, and
z; =1,y;, = 1.5forj = 0, --- , —3. The results are given by the » = 0.1 points
of Fig. 4.
(b) b = 0.02, f(t) = 0 and starting conditions as in (a) above. The results are
given by the A = 0.02 curve of Fig. 4 and serve to approximate the true solutions
of Eq. (11).

The matrix A is

0 1
A= ,
—(6.25 + 2.4t + 0.36¢°) -3
and its characteristic values are
= —1.5 &+ (2 + 0.6%).

For h = 0.02,z = —.03 & 7z (.04 + 0.012¢) which for ¢ < 5 yields nearly the same
value for w (Fig. 3). However, for h = 0.1, 2 = —0.15 =+ ¢ (0.2 + 0.06t) crossing the
% = 0 line at ¢ = 2. The expected unstable behavior appears shortly thereafter (Fig. 4).

6. Conclusions. The introduction to a systematic and convenient method is de-
scribed for determining the stability of a system by operating on the frequencies of the
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Fi16. 4. Computations with [O4 , Cal

system. The procedure is rigorously established for linear constant-parameter systems
only, even though an example is given for a linear varying-parameter system.
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APPENDIX

The stability chart for [0,, , C,,] together with charts for thirty-two other quadrature
methods was computed directly from Eqs. 6 on the automatic digital computer at the
University of Pennsylvania Computing Center. Specifically, for [O,,, C,], one has

—-10/3p + 69" — 2p* + 1/3 p,

a
B = 4p,
¢ = [1 — 48/25p + 36/25 p> — 16/25 p* + 3/25 p*][12/25]},
z=¢la+ Bt p=exp(—w).
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