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—Notes-
numerical QUADRATURE OF SOME IMPROPER INTEGRALS*

By H. SERBIN (Purdue University)

1. Introduction. Problems in potential theory, such as occur in aerodynamics, may
be formulated in terms of integrals which are usually singular. An explicit solution of
such equations is rarely feasible and one is compelled to turn to numerical (approximate)
methods. One such method, exemplified by Multhopp's solution [1] of the equation of
the lifting line, depends on a quadrature formula of the singular integral. In the following
analysis, we derive several formulae related to Multhopp's.

2. Parseval's identity. Let 6 be a variable ranging on the interval ( — r, tt), let
dT , 4>r = rir/N where r = 0, ±1, • • • , ±(2V — 1), N and N is a positive integer, and
consider the formal Fourier series on the interval (—ir, it)

/(0) = S a" cos nd + b„smn6, g{6) = ^ a'n cos n6 + X) &»sin nd.

The iV-th section of a Fourier series will be defined by writing
N N—l

/w(0) = Yla"cosn9+ 23 sin nd.
0 1

Introduce the notation

[/«?), <7(0)] = (2ir)_1 f /(%(*) dO, [M, gig)}K = (2A0"1 £ f(9r)g(0r),
J — t r

where the summation is over all r. Parseval's relation is

U(&), g(0)] = a„a'0 + ^ E (a»a» + b„b'n) (1)
& n-1

and the corresponding relation for finite harmonic series is
N— 1

(/w , 9n)n = a0a'0 + 2 H M + KK) + aNa{, . (2)

Comparing Eqs. (1) and (2), one obtains the

Theorem

(Jn ) ff.v) = (/.V , Qn)n — iO-f/O-N • (3)

The theorem establishes a means of replacing an integral by a finite sum. When
fN and gN are replaced by integrable functions, then the right side of (3) is an approxi-
mation to (/, g).

For a fixed N, the functions fN(0) form a linear manifold in which two functions
fN (6) and gN(6) are equal if and only if for every r

Jn(0t) — gn{9r). (4)

'Received July 15, 1953.
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Equality will be used only in this sense below. We shall be concerned with linear trans-
formations T which transform this manifold into itself.

As an example, consider the identity transformation T defined by

T\S„{B)\ = fN{6).
Since T(l) = 1, T (cos nd) = cos nd, T (sin nd) = sin nd, one can verify, using the
Fourier orthogonality relations, that T may be represented by writing

Tfn{6) = |^1 + 2 (cos nd cos ruj> + sin nd sin n<t>), /at(</>)J,

[N N-1
1 + 2 ^2 cos ndr cos mf> + 2 ^ sin ndr sin n<f>, /w(0)J-

Applying the theorem above,

nm—.
[If N-l

1 + 2 X) cos ndr cos mj> + 2 si11 nSr sin n<t>, )
i i

( 1) aN •

3. An integral in the theory of airfoil sections. An integral which occurs repeatedly
in the theory of airfoil sections defines a transformation

TIM] = (2x)- cot | (d - *)/(*) d* (5)

where the integral is to be understood in the sense of "principal value":

/ = Lim J + J ].J-t «-»0 L^-r *>9 + e J

If f(d) is regarded as being defined on the unit circle then T[f(d)} is that harmonic
conjugate of f{d) which has average value zero. One has

T(cos n0) = sin nd, T(smnd) = — cos nd.

Hence one has the following representation of T

r -T[fN(B)] — |^2 ^ (sin nd cos n4> — cos 710 sin n<£), fN(<t>) ■

But [sin N<f>, /,v(</>)] = 0 and the summation of the second term under the bracket need
extend only to N — 1. Applying the theorem and noting that sin N<t>r = 0, one obtains

T[fN(d)] = ^2 ^ (sin nd cos n<t> — cos nd sin mf>), /at(</>)J

= |^2 t sin n(0 - <j>), /*(<£) •

Use the identity
N 1

Y. sin n(d — 4>) — cot - (0 — <j>), 0
i ^

according as d — <£ is an odd or even multiple of t/N. Then

T[fN(e)] — [2 cot 5(0 — 4>), /jv(^>)]jv ,
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where the prime indicates that the summation on <f> is taken over those values of <t> which
differ from 8 by an odd multiple of v/N. Explicitly,

T{fN(d))e.er = AT1 X' cot m - 4>.)f»(*,). (6)
r+n odd

4. Example. To illustrate the preceding result, consider an infinitely thin stationary
airfoil y = y(x), —1 :£ x :S 1, immersed in a perfect fluid of uniform remote velocity
(1, 0). Let a(x) represent the function dy/dx and let y{x) be the vorticity per unit chord.
Then one has the equation [2, p. 88]

a(x) = (2ir)_1 J (x — x')~ly(x') dx'.

Make the transformations x = cos 0 , x'= cos 6' and multiply through by sin 6.
Using the same functional symbols a and y, one has

a(0) sin d = —(2ir)_1 f sin 0(cos 8 — cos 0')-1[t(0') sin 8'] dd'
J 0

= (47r)-1 f* [cot | (8- 8') + cot | (8 + 0')][y(0') sin 8'} dd'. (7)

Extend the range of definition of a(8) to the interval ( —it, 0) by defining a(d) as an even
function and extend y(8) as an odd function. Then (7) becomes

2a(0) sin 8 = (27T)"1 J [cot | (8 - 0')][t(0') sin 8'] d8' = T(/(0)] (8)

where f(d) = 7(0) sin 8 and T has the meaning of Eq. (5).
In airfoil theory, one invokes the Kutta condition (7 is finite at the trailing edge

x = 1, i.e., 8 — 0) so that /(0) = 0. Applying Eq. (6) and reversing the argument leading
to (7),

TIM].-., = N-1 £' cot *(0r - *,)/(*.)

ITO)],.,. - M + I... | W,)} (9)
where erN = 0 or 1 according as N — r is even or odd. Comparing (8) and (9) and simpli-
fying, one obtains an approximate equation

—a(0r) = (cos 8r - cos 0.)"7(</>.) ~ | e.-w(l + cos 8r ^ 0, jr.

Returning to the original z-coordinate system

a(xr) SS -*"{£' (xr - x,)~'f(x,) - !«riV(l + ®,)~7(-l)}> (10)

where | cos 0r | ^ 1.
Equation (10) furnishes N — 1 equations in the N unknowns fix0, • • • , f(xN).

One additional equation follows upon the observation that the left side of Eq. (8) con-
tains sine terms only up to order N — 1. Hence f(6) must contain cosine terms only
to order N — 1. Therefore

aN = (2Ar)_1 Z cos N8rf(8r) = 0,
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which leads to the equivalent equation

-/(*,) + f(x2) - f(x3) + ■ • • ± (§)/(-1) = 0. (11)
Equations (10 and (11) furnish a system of N equations in N unknowns.

As a numerical example, consider the straight line airfoil inclined at a small incidence
a to the airstream. Then a{x) = — a and Eqs. (10) and (11), for N — 3, give the system

/ 2 = 3a, —ft + f3 = 3a, — /i + /2 — 5/3 = 0,

where fr = f{xr). Solution gives /1 = a, f2 = 3a, f3 = 4a. Since f0 = 0, one may inter-
polate harmonically with respect to 0 using N = 3, obtaining

/(0) = 2a(l — cos 0),

7(0) = 2a(l — cos 0)/sin 0 = 2a(l — x)1/2(l + x)~1/2,

which is the exact result.
The preceding example is not intended as a substitute for the more direct method

usually used in solving the problem of thin airfoil sections. However, it does illustrate
the utility of the quadrature formula (6) in the evaluation of integrals (5) which appear
in other connections (thick airfoil theory).

5. An integral in the theory of the lifting line. As the next case, consider the trans-
formation

TIM] = (2tt)"1 /* cot | (0 - d4>, (12)

where the prime denotes differentiation. One has, as before,

|^2 2 sin n(0 - <f>), U(<t>) ]■

— iV(cos Ndr)aN . (13)
AT

T{JAe)]

Integration by parts gives

T[fN(9)] = [2E« cosn(0 - 0), jVfa)J
and application of the theorem

T[fN{d)]s,Br = J^2 cos n(6r — <t>),

Use the relation
2AT-1

a, = (2N)'1 £ (-1 rue.)
8-0

and the identity
N

2^n cosnx = N, —N — csc2 x/2, N + N2, (x = kir/N),
1

according as k is even and different from zero, k is odd, or k = 0. Then (13) takes the
form, after simplification,

T[fM],.,, = iNfvOr) ~ (2N)-1 csc2 i(er - <*>.)/„(<*,.). (14)



192 NOTES [Vol. XII, No. 2

It is interesting to compare (14) with the result of integrating (12) formally by
parts, disregarding the singularity. The integration leads to a divergent integral

T[M] = — (4ir)-1 /* csc2 | (0 - <t>)M d<t>. (15)

The sum in Eq. (14) is a special kind of "Riemann sum" corresponding to the integral (15).
Equation (14) may be applied to derive Multhopp's quadrature formula. Consider

a finite wing of unit semi-span immersed in a uniform (perfect) stream of unit velocity.
Let y and y' represent the spanwise coordinate; let Aa(y) and T(y) represent the induced
angle of attack and circulation, respectively, at station y.

The induced angle is given by [2, p. 135]

A«(y) = (4*)"1 f+1~^Kdy', (16)J-i y y
where

r(-i) = r(i) = o. (17)
Put y = —cos <j>, y' = —cos <j>'. Use the same functional notation and extend A
and T(<j>) into the range — t < 4>, <t>' < 0 as even and odd functions respectively. In a
way similar to that used in deriving Eq. (8), one obtains

4 Aa(4>) sin <f> = T[r(0)], (18)
where T is used in the sense of Eq. (12). Using (17), one can write the sum in (14).

Z' csc2 j(«r - *.)r(0.) = E' {csc21(or - 0.)r(«.) + csc2 i(fl, + 0.)r(-*.)}.
0<«<JV

Replace r(— ^8) by — T(<pa). Passing to trigonometric functions of double argument,
one obtains

X)' csc2 ~ <t>,)T(4>.) = 4 X)' sin sin <^,(cos 6r — cos <t>sy2T((t>a).
s 0<«<iV

Substituting this result in (14) and the result so obtained in (18), one obtains, after
simplification,

Aa(0r) = NT(6r)/(8 sin 6r) — (2N)'1 sin <^>,(cos 6r — cos <f>a)~2T(<t>,). (19)
0 <8<N

Equation (19) is equivalent to Multhopp's quadrature formula. For numerical applica-
tions, the reader is referred to [1],

6. An integral over an infinite range. Define a transformation T by

T[f(x)] = ir-1 J (x - y)~lf(y) dy. (20)

Consider the related transformation

Ti[f(x)] = 7t_1 J (x — y) 1f(y) dy, (21)

where L is a positive quantity.
Make the transformation

irx = Ld, 7ry = L<t> (22)
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and write

T^fix)) = F{6), }{y) = }M).
Then

F{ff) = t"1 j\o- *)"7.(*) d4>. (23)

Write

6 — <t> — h c°t 5(0 — <t>) ~1" L(6, <j>), (24)
where L(8, 4>) is-continuous in (6, <f>). Then, using (6),

F(6) = (27t)_1 J cot - (0 — <£)/i(<#>) d*t> + i" 1 J L(9, 4>)fi(<t>) d<t>,

F{er) £* AT-1 cot 5 (er - *.)/ifo.) + *_,(2r/JV) £' L(0r , «.)/,(«.),« ^ <
where the second integral has been approximated by a Riemann sum. Combining terms
and noting (24),

F(0r) = 2/N £' (»r - *0"7i(*0
a

= (2/tt) E' (r - r7W, x. = sL/N. (25)

Equation (25) relates to (21). We conjecture that the modified quadrature formula

TOU = (2/t) Z' (r-f'/W, (26)
— 00<«<CD

where x, = sAx, would be more suitable for Eq. (20). In fact, if one puts

f(x) = exp (ikx),
then one can write the summation in Eq. (26) in the form

— exp (ikxr) ^2 2ia~' sin {ok Ax) = —i exp {ikxr)J\\og exP (—(27)
<r odd>0 V A GXp { IK AXjJ

Here the symbol & represents "imaginary part of" and the log function is suitably
defined as a single-valued function. When k Ax is not a multiple of tt, then simplification
of (27) and substitution into (26) gives the result

T[f(x)]z-zr = i exp (ikxr), (28)

which is the exact result.
More generally, consider functions of the form

f(x) = [ g(k) exp (ikx) dk (29)
J-K

where g(k) is a continuous function and if is a positive quantity less than t/ Ax. The
infinite series

TV (r — s) exp (ikxr), xT = r Ax,
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summed over odd s, is uniformly convergent in k because of Abel's lemma.
Hence

(2/tt) X' (r ~ s) 1 f g(k) exp (ikx,) dk = (2/ir) [ g(k)[J^' (r ~ s) 1 exP (ikx,)]
J-K J-K

dk

= i / g(k) exp (ikx) dk (30)
J-K

in view of (28). However, the transform of f(x), Eq. (29) is given by

T[f(x)] = 7r~1 [ (x - y)'1 [ g(k) exp (iky) dk dy.
J-CO J-K

When x is restricted to any finite interval, the order of integration may be interchanged
provided that one interprets the singular integral with respect to y as a "principal
value". Hence

T[f(x)] = ir~l f g(k) [ (x - y)'1 exp (iky) dy dk
J-K J-co

= i I g(k) exp (ikx) dk
J-K

which agrees with (30). Therefore the quadrature formula (26) is exact for functions
of the form (29) provided that

K Ax < r.
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NOTE ON THE EXISTENCE AND DETERMINATION OF A VECTOR
POTENTIAL*

By A. F. STEVENSON (Wayne University)

The problem of finding a solution of the equation

curl F = f, (1)

where f is a given vector function of position and F is to be found, is a classical one,
and one would hardly think that there was anything fresh to be said about the matter
to-day. In connection with some recent work, however, the writer had occasion to look
into the matter somewhat closely, and as a result of this it appeared that the usual
treatments1 are not satisfactory if f is only defined in a restricted region. Usually, in
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