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CLOSURE WAVES IN HELICAL COMPRESSION SPRINGS WITH
INELASTIC COIL IMPACT1

BY

J. A. MORRISON2
Brown University

Summary. This paper deals with the problem of spring surges taking into account
coil closure. This may occur in many cases of compression springs subject to impact.
Inelastic coil on coil impact conditions are assumed. The simple theory of spring surges
is adopted wherein only the motion of the spring wire parallel to the axis of the spring is
considered and the assumption made that each element of the spring satisfies the force-
longitudinal strain relation of the whole spring, before coil closure occurs. The basic
theory of coil closure with inelastic impact conditions has been given by Lee [if. The
spring is initially at rest and unstrained with one end fixed and the other (the impact
end) is given an impulsive velocity and then either maintained at this velocity or de-
celerated at a constant rate. The case of a mass attached to the impact end is also con-
sidered. Conditions are obtained for which partial or complete closure of the spring
occurs.

1. Introduction. We are concerned with the motion of a helical compression spring
as depicted diagramatically in Fig. 1, the end x = I being fixed. Following [1] we use as

x+u

Fig. 1.

an independent space variable the position x along the unstrained spring. The dis-
placement of an element of the spring in position x is taken as u(x, t), so that the position
of the element at time t is given by (x + u). If / is the compressive force transmitted
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across the section x, then the equation of motion of an element dx of the spring is

(1)

where m is the mass of the spring per unit original length. This theory is analogous with
that of longitudinal waves in a linear elastic material and here f replaces the nominal
stress and m the density. The nominal compressive strain of an element of the spring is
t = —ux. Before closure occurs there is a linear relation between the stress and the strain
given by

/ = Ee, (2)

where E is a constant depending on the dimensions and material of the spring.
Substituting in (1) gives the linear wave equation for u, ,

u„ — cluxx = 0, (3)

where c0 = y/E/m is the constant velocity of wave propagation.
The velocity v of an element of the spring is given by v = u, . The characteristics in

the (x,£)-plane are the straight lines (x ± cQt) = constant. The corresponding character-
istic relations are c0e =F v = constant, or mc0v =F f = constant.

Now let us introduce the dimensionless variables

w = t. x = -• V = —• 2 = —• $ = —
1 I1' V V So eo'

where I is the length of the unstrained spring, v0 is the initial impulsive velocity of the
impact end, /0 = mc0v0 and e0 = v0/c0 .

Then the characteristic lines in the (X, T)-plane are

X ± T — constant, (4)

and the corresponding characteristics relations are

FT2 = constant, or V =F $ = constant. (5)

We now consider closure of the coils. This takes place when the approach of sections
of adjacent coils with the same angular position is equal to the initial separation of the
coils. This condition is expressed analytically in the form

u(x) — u(x + p) = p — d, (6)

where p is the pitch of the coils and d is their thickness.
Since we are considering in this paper only inelastic coil impact conditions so that

the coils remain in contact after closure (until separated by the elasticity of the spring)
and we are concerned only with the average effects around a single coil it is permissible
to replace the finite difference condition in (6) by a derivative (see [1] for a fuller dis-
cussion) so that coil closure is to be associated with a fixed upper bound for the com-
pressive strain e, giving the condition

e = ~ux < (p - d)/p = . (7)
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or

$ < K (8)
where K = emsx/e0 . Hence we have

$ = 2, for Z < K
(9)

$ = K, for 2 > K

since an increase in the compressive force may take place when coil closure has occurred
but no increase can take place in $ according to (8).

The relation between 2 and $ is shown in Fig. 2. Considerations of continuity and

Fig. 2.

momentum across wave fronts of closure yield the conditions

(10)

where A represents the discontinuity of the variable due to the passage of the wave,
and c is the magnitude of the wave velocity, relative to the unstrained spring.

In terms of dimensionless variables Eq. (10) becomes

| AV | = G-A$
(ID

A2 = fi-| AV |

where 0 = c/c0 . Equations (4), (5), (9) and (11) are used in determining the solution
of the problem for prescribed boundary conditions.

2. Impulsive velocity at impact end maintained. In this section we consider the
case in which the end x = 0 is given an impulsive velocity v0 at time t = 0 and this
velocity is maintained, until complete closure of the spring has taken place. The spring
is taken to be initially unstrained and at rest. Until closure occurs the configuration in
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the (X,T)-plane is as shown in Fig. 3, X = 0 corresponding to the impact end and
X = 1 to the fixed end of the spring. Throughout the motion W — V l^.o = 1.

A wave of velocity, stress and strain discontinuity is propagated along the spring
with constant speed c0, commencing at the impact end at time t — 0 and being reflected
alternatively at the ends. Using Eqs. (4) and (5) we find that

V = §{1 - (-1)'}, 2=r (r > 0),

Fig. 3.

in region r of the (X,T)-plane. It is seen that after the passage of the discontinuity
wave front the stress at a certain position in the spring is increased by an amount f0 and
remains unchanged until the wave again passes. The corresponding velocity is alterna-
tively v0 and 0.

Now closure does not occur so long as 2 < K. Since 2 = r in region r it follows that
closure must eventually occur, as is otherwise evident. Further, when closure commences
it does so from an end of the spring.

Let n<K<n+l(n>0, integer). Then closure commences at T = n and from
the impact end if n is even, from the fixed end if n is odd. We first consider the case when
n is even. Since we are assuming inelastic coil impact conditions the coils do not separate
after closure so that at T = n + r a portion of the spring 0 < X < x is moving as a



1954] CLOSURE WAVES IN HELICAL COMPRESSION SPRINGS 461

rigid body with uniform speed equal to that of the impact end. It follows that the stress
throughout this portion is constant.

Now the coils in front of the closure wave are at rest and the stress is given by 2 = n.
Hence in (11) we have | AV \ — 1, and A<£ = (K — n), using (8) and (9). Also Q = dx/dr.
So from (11) we obtain

Q = 1 /{K — n), AS = 1 /{K — n).

Hence the closure wave velocity is constant as shown in Fig. 4(a) (for the case n = 2).

T

(a) (b)
Fig. 4.

The shaded portion depicts coil closure. Complete closure of the spring has taken place
at r = (K — n), and then T = T' = K.

The stress at X = \ is given by n + AS = \n + 1/(K — n)}. If K is close to n
this stress is large, but so also is 0. (Note 9. > I ). We have in fact,

[ ' " Af dt = /„ - fK AS dT = & =
J T-n C0 J T-n Co

mlv„

= (weight of spring) X (impact velocity).

When n is odd closure commences from the fixed end. Ahead of the closure wave
the stress is given by S = n and the velocity is v0 , so V — 1. In this case the closed
portion is at rest, so again we have | AV | = 1 and A$ = (K — n). Hence the closure
wave velocity is given by 9, = 1 /{K — n), as before, and the stress in the closed portion
is again \n + 1 /(K — »)}.

The (X,71)-plane is shown in Fig. 4(b) for the case n — 1.
3. Impact with constant retardation. In this section we consider the case in which

the end x = 0 is retarded at a uniform rate a, after being given an impulsive velocity
v0 at time t = 0. The spring is again taken to be initially unstrained and at rest. Until
closure occurs the configuration in the (X,T)-plane is as shown in Fig. 3. During the
motion the velocity at the impact end is given by IF = (1 — XT), where X = al/c0v0 > 0.



462 J. A. MORRISON [Vol. XI, No. 4

As in the previous case a wave of velocity, stress and strain discontinuity is propagated
along the spring with constant speed c0 , commencing at time t = 0 from the impact
end and being reflected alternately at the ends. By making use of Eqs. (4) and (5) we
find expressions for V and 2 as given in the Appendix. We find that, if closure does occur,
then it takes place from an end of the spring and moreover from that end at which
reflection of the wave of discontinuity has just occurred.

We next investigate the time at which closure occurs, if at all. Let 2* denote the
value of 2 at T = (r — 1) + 0, (r > 1), at the end X = 0 if r is odd and at the end
X = 1 if r is even.

Then

f Z?t+1 = {(2k + 1) - 2k*\})
< ( k > 0.
(z2*4+2 = 2(k + 1)(1 - kX) )

In particular, = 1, 2* = 2, i.e. independent of X. Closure occurs when $ = 2 =
K(0 < K < co). Therefore, if 0 < K < 1, closure commences immediately from the
impact end and if 1 < K < 2 from the fixed end after the passage of the first wave.
These results are independent of X, so we now need consider only 2 < K < <». The
case X = 0 was discussed in the previous section and it was shown that closure always
took place.
Case X > 1/2.

Here 2t < 2, (r > 1), since

(2*t+2 - 2*t+0 = (2*t+1 - 22?) = (1 - 2AX), (fc > 1). (12)

Hence if K > 2 no closure occurs.

Case W+T) ^X<YP,P-1, integer•

Here 2* increases strictly up to 2£,+2 and 2* < 2?p+2 , all r. [See (12)].
But 2fp+2 = 2(p + 1)(1 — pX). Hence, if K > 2(p + 1)(1 — pX), no closure occurs.

If 2 < K < 2(p+ 1)(1 — pX), then closure does occur. In this case there is an integer q
such that 2 < q < (2p + 1) and 2* < K < 2*+1 . Hence closure commences a
T = q + 0, and from the impact end if q is even, from the fixed end if q is odd.

We now determine under what conditions complete closure of the spring occurs. The
distance moved by the impact end is given by y = v0t — \at2, whence t = 1 /a{v0 —
s/vt — 2ay). Complete closure occurs if, and only if, y attains the value lemax , i.e.
if, and only if, vl — 2aZemax > 0. This condition may be written in the form 2XK < 1.

Closure from the fixed end. We consider here the case where closure commences from
the end X = 1 of the spring at T = (2k + 1) + 0. Hence we have

{(2k + 1) - 2fc2X} < K < {(2k + 2) - 2k(k + 1)X), and (1 - 2k\) > 0.

The closure wave has a velocity not less than c0 and we suppose that the wave front has
reached X = (1 — x) at T = (2k + 1) + r. The configuration in the (X,T)-plane is
shown in Fig. 5 (for the case k = 0), as before the shaded portion depicting coil closure.

The closed portion of the spring (1 — x) < X < 1 is at rest, so the stress throughout
is constant and equal to that at X = (1 — x)- Now ahead of the closure wave front
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S = $ and Eq. (11) gives AS = Q2A$. Hence closure ceases when = 1, the coils
then barely coming into contact. (£2 = dx/dr).

Just ahead of the closure wave front we have

2 = <j> = {(2& + 1)(1 - Xr) - (2k2 + 2k + 1)X + X(1 - x)}
and

F = {(1 - Xr) - (2k + l)Xx}.

Just after the wave front has passed, $ = K, V = 0. Substituting in the equation
| AF | = OA<J>, putting G — dx/dr and integrating we obtain

X{x2 + 2(2k + l)xr + r2} -2r + 2{K - {2k + 1) + 2k(k + l)X}x = 0 (13)

(t = 0 when x = 0).
Equation (13) is that of a conic in the (X,T)-plane. If k = 0 the conic is a parabola and if
k > 1 a hyperbola.

Case k = 0. Closure commences at T = 1 + 0, 1 < K < 2. The equation of the parabola
is ,

X(x + r)2 -2r + 2(K - l)x = 0. (14)

This may be written in the form

where

U-^bc + r).

The parabola is shown in Fig. 6, with K < 2. Its axis is parallel to the F-axis, and its
vertex A is at U = (2 — K)/2y/2 X, F = — (2 — K)2/4 y/2 K\. The tangent to the
parabola at A is parallel to the U-axis and so at A we have dx/dr = 1. If x > 1 at A
then complete closure occurs, while if x < 1 only partial closure occurs. But at A

X = ^(t/-F)=(4- JO/8ZX.
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Hence if K2 < 4(1 — 2 XK) complete closure of the spring occurs on this closure wave,
while only partial closure occurs if K2 >4(1 — 2 XK). Now 1 < K < 2. Thus we obtain
the necessary and sufficient conditions for complete closure in the form

(0 < X < 3/8 (l < K < 2
\ (15)
[X < (4 - K2)/8K

The case X = 0 is included here and it is seen that if K = 2 this is the only case in which
complete closure can take place. From Eq. (14), {1 — X(x + r)}' = + \/l — 2XKx,
since r = 0 when x = 0. The stress behind the closure wave (1 — x < X < 1) is

2 = K\ 1 - X(x + t)) KVl- 2\KX
[K - {1 - X(x + r)}] {K - Vl - 2X/Cx}'

As x increases this decreases. We also find that

0 _ dx Vl — 2\Kx
dr {K - Vl - 2XKx}'

The case of partial closure after the first wave has been considered. Here 1 < K < 2,
K2 + 8 \K — 4 > 0. Closure ceases when

(4 - K2) . , (3K - 2) (2 - K)x = 8X^ = X and T =  8XK  -

It may be shown that the spring then starts opening up at the constant rate c0 (relative
to the unstrained spring). If, moreover, closure does not commence from the impact
end when the discontinuity wave is reflected there, then no more closures occur and the
configuration in the (X,T)-plane is as shown in Fig. 7. The condition for no further
closure is K2 — 8\K + 4 < 0, so together with the above conditions we have

ih < X < 5/8 (X > 5/8
or < or

(2{2X - V4X2 - 1} < K <2 (l < K < 2,

1 < K < 2

4 + K2 (16)
X >- 8 K

If K2 > 4 | 1 — 2XK |, then partial closure occurs from the fixed end after the first wave
and closure commences from the impact end after the second wave. Complete closure
may, or may not, eventually occur (according as 2XK < 1, or 2XK > 1, respectively).
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Closure from the impact end. We consider here the case in which closure commences
from the end X = 0 of the spring at time T = 2k + 0, (k > 0). Hence we have

2k{\ — (k — 1)X} < K < {(2k + 1) - 2fc2X}, and (1 - 2k\) > 0.

The closure wave has a velocity not less than c0 and we suppose that the wave front
has reached X = x at T = 2k + t. The closed portion of the coil is moving as a rigid
body with the velocity of the impact end and hence it is being decelerated at a constant
rate. The configuration in the (X,T)-plane is shown in Figs. 8 and 9 for the cases k = 0,
k = 1, respectively.

T = 2

x=i
Fig. 8.

By use of Eq. (11) we find x, t are connected by the relation

Xr2 + 4fcXxr + 2{K - 2k(\ - k\)\x - 2r = 0. (17)
If k = 0 this is the equation of a parabola and if k > 1 that of a hyperbola. We consider
the case k = 0.
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Since the portion 0 < X < x is moving as a rigid body with uniform retardation a
we obtain

2 = 2|x_x -\(x~X), 0 < X < x. (18)

Hence the stress in the closed portion decreases as X decreases. From Eq. (11) we find

Z|,_x - £(1 - Xr)2 = 1(1 - 2\KX),

using Eq. (17). Hence at a pt. in the closed portion 2 decreases as x increases. Complete
closure takes place if, and only if, (K2 + 3\K — 1) < 0. We also have the condition
0 < K < 1. Hence we obtain the necessary and sufficient conditions for complete closure
in the form

X > 0

i ,  or
0 < K < - { V9X2 + 4 - 3X},

0 < K < 1

(19)

4. Mass attached to impact end of spring. In this section we consider the case in
which a mass M is attached to the end x = 0 of the spring. The spring is initially at rest
and unstrained, the axis of the spring being horizontal, when the attached mass is given
an impulsive velocity v0 at time t = 0.

The equation of motion for the mass M is

% = -/.S, (20)

where W = V ^.o, £ = 2 |x,0 and n = ml/M. Until closure occurs the configuration in
the (X,T)-plane is as shown in Fig. 3. A wave of velocity, stress and strain discontinuity
is propagated along the spring with constant speed c„ , commencing at the end x = 0
at time t — 0 and being reflected alternately at the ends.

Using Eqs. (4), (5) and (20), we find

In region 0: 2 = V = 0

In region 1: 2 = V = e~"{T~X) (21)

In region 2: 2 = 2e~"cr_I) cosh {n(X — 1)},

V = 2e~"lT~1) sinh {m(X - 1)}.

Since, in region 1, T > X, we have 2 < 1. (m > 0.) Hence, if 0 < K < 1 closure com-
mences from the impact end immediately and if K > 1 no closures occur in 0 < T < 1.
For 1<71<2, if 1 < if < 2 closure commences from the fixed end at T = 1 and if
K > 2 no closures occur. If 2 < K < (2 + e~2*) closure commences from the gun end
at T = 2. We consider these three closures in detail.

Closure from fixed end after first wave. 1 < K < 2. Closure commences at T — 1.
We suppose that at T = 1 + r the closure wave has moved along the spring to X —



1954] CLOSURE WAVES IN HELICAL COMPRESSION SPRINGS 467

(1 — x) the portion (1 — x) < ^ < 1 being closed and at rest. The configuration in the
(X,T)-plane is as shown in Fig. 5. Now just ahead of the closure wave front we have
$ = V = 2 = e~"(T+x\ Setting = dx/dr we obtain from Eq. (11)

-u(r + x)   I jr -d(T + x)i

- dr {K ~

Integrating,

Kmc + e~"(x+T) = 1 (22)

since initially x = 0 = r. Hence

Also, fi = (1 — Khx)/{(K — 1) + Knx} which decreases as x increases. We find
2 = A(1 — Knx)/{(K — 1) + Kfix], for (1 — x) < X < 1. Complete closure occurs
on this wave if, and only if, (1 — K/j.) > {(A — 1) + K/i], i.e., A(1 + 2n) < 2. But
1 < A < 2. Therefore,

1 < A < 2

. (2 - A)M 2A
or

0 < p < 1/2

1 < A <
(1 + 2m)-

If complete closure occurs then the time taken is given by (1 + t) = 1/n log (1/(1 —
Am)) = T'. But during the period 0 < T < T', W = e~"T. Therefore J0r W dT = A
so that the gun end has moved through a distance lemSI , which is correct.

If complete closure does not occur then closure ceases when 0 = 1, i.e., when x =
(2 - K)/2Kn = x* and then r = 1/2M {2 log (2/A) + 1 - (2/A)) = r*.

Closure from impact end at T = 2k(k > 0). Let us suppose that closure commences (for
the first time) at the impact end at T — 2k. With the usual notation put T = 2k + r,
and let X = x be the position of the closure wave front. Let the stress and velocity just
ahead of the closure wavefront be given by $ = 2 = 2(x, r), V = F(x, t). Since no
previous closures have occurred Eq. (3) holds in this region ahead of the closure wave-
front. Hence we obtain

^X + 52 = 0 52 + ai = 0.
dr dx ' dr 3x

W — W(t) gives the velocity of the impact end and S = 2 |x=0 • From Eq. (11) we find

{JF - V(x, r)} = fr [K - 2(X, r)}. (23)

and

2|x-x = S(X, r) + {W - V(x, t)}. (24)
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But, since the portion 0 < X < x is closed and moving as a rigid body,

2 = 2j.Y_x + (x - X)^, 0 < X < x

and in particular

3- ZU-.+x^.

Hence

s-(*§+h,i)+K'>-i^
But, from Eq. (20), dW/dr + m»S = 0. Hence

£ |W(1 + MX)} + M^fc, r) - F(x, r) = 0.

Let F(x, r) satisfy the conditions

~ = MS, = MF, no, 0) = TP(0),

in virtue of the equation dF/dr + 32/dx = 0.
Then we obtain on integration

IF(1 + ux) = F(x, r). (25)

Substituting for W from Eq. (23) we find that

(1 + MX) {K ~ 2(x, r)} fr + {(1 + MX)' V(x, r) - Fix, r)} = 0. (26)

But

f-T [(1 + MX)1^ " 2(X, r)}] - ^ {(1 + MX)" V(x, r) ~ F(X, r)}

= -d + Mx)f-mF + |-(1 + mx)^

Hence the differential equation integrates immediately.
Case k = 0. 0 < K < 1. Closure commences from the impact end immediately. The
configuration in the (X,!r)-plane is as shown in Fig. 8. Here 2(x, r) = F(x, t) = 0,
and TF(0) = 1. Therefore F(x, r) = 1. Hence, from Eq. (25), W{ 1 + mx) = 1 and from
Eq. (26), K( 1 + mx) dx/dr = 1. Therefore Kx{2 + mx) = 2r, since x = 0 when r = 0.



1954] CLOSURE WAVES IN HELICAL COMPRESSION SPRINGS 469

This is the equation of a parabola whose axis is parallel to the T-axis. We find that

0 = ^ = —1   and S =    
dr K(\ + mx) K{ 1 + mx)3

Also we have

(1 + nX)
K( 1 + mx)3

2 = EV1 I A3, o < X < x-

Hence in the closed portion 2 decreases as X decreases so that the coils remain in contact
provided S > K. As x increases S decreases so complete closure takes place if, and only if,

i.e. tf2(l' + m)3 < 1. but 0 < K < 1.

(0 < K < 1
or \

10 < K < (1 + m)-3/2 (o < m < (K~2/3 - 1).

If this condition is not satisfied the coils start to open up from the end X — 0 when

1

and then

x = - (K~2/3 - 1) = x*

= %{K~in ~ 1} = T*"

Case k = 1. 2 < K < (2 + e"2").
The configuration in the (X,7')-plane is as shown in Fig. 9. Here

s(x, r) = 2e~*<T+1) cosh {m(1 - x)},

F(x, r) = —2e~"(r+1' sinh (M(l - x)! and W(0) = e'2".

Hence, from Eq. (25),

W( 1 + MX) = 2e~u(T+1) cosh {M(I - x)} - 1.

Also, from Eq. (26), we obtain on integration

2 + mx) + 2Mt = 4{1 - e-"<1+r)[(l + nx) sinh {M(l - x)} + cosh {M(l - x)}]}•

5. Discussion of results obtained. This paper has been devoted to investigating
the occurence of coil closure and the stresses during closure in a helical compression spring
one end of which is fixed, the other being given an impulsive velocity when the spring is
initially unstrained and at rest. The number K = l/v0 (c0em„) arises, where v0 is the
impact velocity and c0emax is a quantity depending on the dimensions and material of
the spring. Inelastic coil on coil impact conditions have been assumed so that the coils,
remain in contact after closure, until separated by the elasticity of the spring. The
results may, however, give a good indication as to the actual state of affairs in which
bouncing of the coils occurs.
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In the first instance the case in which the impulsive velocity at the impact end was
maintained was considered. Here complete closure inevitably occurs and it was found
that exceptionally high stresses could be set up during closure if the coils were very close
together prior to the passage of the closure wave. Closure commences from either the
impact or the fixed end and complete closure occurs on that wave.

Secondly, the case in which the impact end was retarded at a constant rate a was
considered. The number X = (a/v0)(l/c0) occurs, where l/c0 is a quantity depending on the
dimensions and the material of the spring. The criterion for complete closure is 2\K < 1,
so that if complete closure of the spring is to be avoided we need (2a/v0)ltma* > 1- Note
that depends on the dimensions of the spring only and not on the material. Thus
it is seen that, unlike the first case, complete closure does not necessarily occur and for a
given spring and prescribed impact velocity it will not occur if the retardation of the
impact end is sufficiently large. Further, it is found that it is possible that no closure
whatsoever will occur but that if closure does occur it commences from an end of the
spring. If 0 < K < 1 closure commences immediately from the impact end, whilst if
1 < K < 2 closure commences from the fixed end after the passage of the first dis-
continuity wave, and these statements are independent of the value of X. For K > 2,
no closure occurs if X > 1/2. If 1 < K < 2 and only partial closure occurs from the
fixed end after the first wave, then, if closure does not commence from the impact end
after the second wave, no more closures occur at all. However, if closure does start from
the impact end after the second wave complete closure of the spring does not necessarily
occur.

Lastly, the case in which there was a mass attached to the impact end was con-
sidered. The number n, which is equal to the ratio of the total weight of the spring to
the weight of the attached mass, occurs. This will, in general, be small. If 0 < K < 1
closure commences immediately from the impact end and unless K is fairly close to 1
complete closure will occur on this wave. If 1 < K < 2 closure commences from the
fixed end after the first wave and complete closure will occur on this wave unless K is
fairly close to 2 (m being small). However, if n > 1/2, complete closure will not occur
on this wave, however close K is to 1. It is noted that yu = 0 in this case and X = 0 in
the second case both correspond to the first case.

We will now discuss the stresses in the spring. Before closure occurs the stress, or
nominal compressive force, is proportional to the nominal compressive strain and less
than the quantity mc0v0K. When, however, coils of the spring come into contact, and
remain so, the compressive force is equal to mc0v02 where 2 > K. In the first case the
compressive force in the closed portion of the spring remains constant while closure is
taking place and, as previously mentioned, we may have a large compressive force. The
time taken for the closure wave to traverse the length of the spring is correspondingly
small, though. In the other two cases the value of 2 does not remain constant in the
closed portion of the spring while closure is taking place. When closure commences from
the fixed end 2 is the same throughout the closed portion at any given instant, but it
decreases as the closure wavefront passes only the spring. When closure commences
from the impact end the value of 2 at a given position in the closed portion of the spring
again decreases as the closure wavefront passes along the spring. In addition, however,
the value of 2 decreases uniformly as we pass along the spring from just behind the
closure wavefront to the impact end, this uniform rate of decrease being independent
of the time in the second case.
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APPENDIX

In region 2r, (r > 0)

F = 2r\(X - 1)

2 = 2r{(l - XT) + rX}

In region (2r +1), (r > 0)

F = {(1 - XT) + (2r + 1)XX}

2 = {(2r + 1)(1 - XT) + XX + 2r(r + 1)X}

At T = 2ft + r, (ft > 0), 0 < r < 1, 0 < X < r

7 = {(1 - Xr) - 2/fcX + (2fc + 1)XX}

2 = {(2A: + 1)(1 - Xr) - 2k\ + XX}

At T = 2k+ t, (k>0), 0 < r < 1, t < X < 1

V = 2kX(X - 1)

2 = 2&{(1 - Xr) - kX}

At T = (2k + 1) + t, (A > 0), 0 < r < 1, 0 < X < (1 - t)

F = {(1 - Xr) + (2ft + 1)X(X - 1)}

2 = {(2fc + 1)(1 - Xr) - (2ft2 + 2ft + 1)X + XX}

At T = (2ft + 1) + r, (ft > 0), 0 < r < 1, (1 - r) < X < 1

F = 2(ft + 1)X(X - 1)

2 = 2(fc + 1){(1 - Xr) - ftX}
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