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LOWER AND UPPER BOUNDS TO THE ULTIMATE LOADS OF BUCKLED
REDUNDANT TRUSSES*

BY

E. F. MASUR
Illinois Institute of Technology

Synopsis. In the buckled state, statically indeterminate, rigid-jointed trusses
support loads which are generally in excess of those corresponding to initial instability. As
buckling proceeds, the loads usually approach limiting values, called "ultimate loads".
Two theorems are derived establishing lower and upper bounds to the ultimate loads.
Elastic behavior is assumed throughout.

Introduction. If the rigid joints of a truss are subjected to a set of external loads,
whose values are fixed except for a common multiplier X0 , the equations of equilibrium
of the z-th joint are of the type1

cos <£,,\ . . (Xi

Mu =0 (i = 1, 2, • ■ • ra) (lb)
i

where S{j and Mu are, respectively, the axial force and bending moment in bar (i, j)
at joint i, </>,,- is the inclination of bar (i, j), X{ and Yt are external force components,
and where the summation extends over all the bars adjoining i. If now all bars are
composed of an elastic material and the elementary theory of beams in bending under
axial forces is assumed to hold, the joint moments Mu can be expressed as linear func-
tions of the joint rotations 0; [2], Substitution of these expressions into Eqs. (lb) leads
to a set of linear, homogeneous equations in the joint rotations of the type

n

X ctijOj = 0, (i = 1,2, n) (2)
?' = 1

where the ati form a symmetric matrix whose components are transcendental functions
of the physical characteristics of the bars, and of the axial forces. The equilibrium of
the structure is stable only if the matrix is positive definite; a necessary condition of
neutral equilibrium is given by

/(Xo) - | au | = 0. (3)
The lowest positive real root of Eq. (3) is the desired "critical" multiplier X0 at which
buckling occurs.

By definition, the bar forces Su are uniquely determined by Eqs. (la) for given
X0 in a statically determinate truss. If, on the other hand, the truss be of m-th degree
of redundancy relative to its axial force distribution, the most general expression for
the bar forces is of the form

Su = Zx^f; (4)
  {-0

*Received Nov. 21, 1952.
'The effect of the linear displacements is ignored in Eqs. (1) and (2). This is in conformity with the

experimental results given in Ref. [1] (see the bibliography at the end of the paper).
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in Eqs. (4), the force systems £,•/' are restricted by the set of equilibrium equations

Z ^'{™S + 5o j j/} = 0, (r = 0, 1, • • • m; i = 1,2, • • • ri) (5)

where oVQ is the Kronecker Delta.
It is convenient to restrict the force systems S''' further by the requirement (which

can always be fulfilled) that
O(0) q(r) j

£ ' V A ~ = p8or > (r = 0, 1, 2, • • • m) (6a)
it ^k^-k

£ '9!?i"Z' - 8- , <r,8- 1,2, ■■■»,) (6b)

where the summation extends over all the members of the truss.2 Eqs. (6a) indicate
that the force system S'a is the actual force system, i.e. the one corresponding to mini-
mum strain energy, in the unprestressed, unbuckled truss for X0 = 1.

The axial forces in the buckled state are further restricted by the "compatibility
condition" that

SLk = {Uj — u,) cos (fin + (Vj — Vi) sin <£,■,■ , (7)

in which 5Lk is the change in the distance between joints i and j relative to the unloaded
state and (u, v) are the cartesian components of the linear displacement vectors of the
joints. If both sides of Eqs. (7) be multiplied by Slr> (r = 1, 2, • • • to) and summed
up over all the members of the truss, we are led, after rearranging the summations and
in view of Eqs. (5), to the system of "virtual work" equations

ZS^SL^O. (r = 1, 2, • • • to) (8)
k

For the sake of generality it will be assumed that the truss has been prestressed,
with the initial force system expressed by

St = (9)
{-1

On the other hand, 5Lk can be written in the form

do)
'k-n-k

where 8k represents the shortening of the chord length of the fc-th member corresponding
to its curvature in bending. If we substitute Eqs. (10) in (8) and consider Eqs. (6) and
(9), we arrive at the following set of equations for any bent state:

K ~ X? = H Slr)8k . (r = 1, 2, • • • to) (11a)
k

It has been shown elsewhere [3] that, for an actual buckling mode,

£ Slr)Sk = h £ H ciij.rdiOj = fif ,r (r = 0, 1, 2, • • • to) (lib)

*Sk ,Lk,Ek,Ak are the axial force, length, modulus of elasticity and cross-sectional area, respectively,
of the fc-th bar.
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in which a subscript, preceded by a comma, designates the partial derivative with
respect to the corresponding parameter X, or /., = df/d\r . Thus, during buckling,

Xr - \f = ju/.r , (r = 1, 2, • - m) (12a)

where yu > 0 is a measure of the extent to which buckling has proceeded and is expressed
by

J ±e!
 , (12b)

2 Z Au
i = l

in which Ai( is the cofactor of ai{ in Eq. (3). It follows immediately from Eqs. (3) and
(12) that, as buckling commences, the load X0 will generally increase, and never decrease.
Considering all parameters Xr (r = 0, 1, 2, ■ • • m) to be functions of n, Eq. (3) can be
written in the form

FGO ■ /[x„G0, x.GO, • • • \M] (13)
for all values of p. Differentiating Eq. (13) with respect to m, we obtain the identity

dF , d\o . dXt   _ .
§'•< * "°- (14)

On the other hand, by dividing Eq. (12a) by n and letting n approach zero, we are led to

^ (m = 0) = = 0) (r = 1, 2, • • • m) (15)

It follows, from Eqs. (14) and (15), that as the truss is on the verge of buckling

■ ff = -(/.or1 £ (/.£)2, do)
where all the terms in Eq. (16) are to be evaluated at m = 0.

It can be shown that /,0 is negative. In fact, if Xj be the smallest positive buckling
parameter, i.e. the one corresponding to neutral equilibrium, the positive definiteness
of the matrix [a,,] implies /(X0) > 0 for X0 < Xj . Since, by Eq. (3), /(Xj) = 0, and if
multiple roots be excluded, it follows that

/.o(X0 = XJ) < 0. (17)
An inspection of Eqs. (16) and (17) shows that

ff (m = 0) > 0, (IS)3
where the equality sign applies only to the special case

/.r(Xr = Xt) = 0. (r = 1, 2, ••• m)

It follows further from Eqs. (12) that for increasing n, and provided the \r all stay

3Actually, this relationship applies to all values of as can be demonstrated by means of energy
considerations.
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finite,4 the external and internal forces approach a state governed by the equations

f(K , X? , • • • K) - o, 9)
f„(K, xr , • • • XUJ =0, (r= 1, 2, ••• m)

in which the superscript designates limiting, or "ultimate" values of the parameters,
with Xo referred to as the "ultimate load".

The determination of Xo is of interest to the engineer since it represents the ultimate
carrying capacity of the truss. Since, however, the solution of Eqs. (19) presents formi-
dable numerical obstacles, it is easier to estimate the value of Xo by means of two theorems
establishing lower and upper bounds to the ultimate load.

A stability criterion. Before proceeding to these two theorems, it is convenient to
establish a stability criterion for the unbuckled truss, which is to be used in the later
proof. This criterion is based on the assumption that, for a given system of external
forces identified by the load parameter X0 , the potential energy corresponding to the
unbuckled state is less than that of any neighboring, "geometrically consistent" bent
state if the equilibrium of the truss is to be stable, or

V* < V. (20)
In what follows, a geometrically consistent bent state is defined as one in which

the deflection curves of the bars are of sufficient degree of smoothness to make the
discussion meaningful, and satisfy the geometric boundary conditions of continuity
at the joints. Geometric consistency also implies the satisfaction of Eqs. (7) and (10);
it is finally assumed that the force equations (4), (5), and (6), and therefore also Eqs.
(8) and (11a), are valid.

With these definitions, the potential energy

v = u — w = I Z + Us — Xo E (*««< + Y,t\),
A k X

in which UB is the strain energy associated with the bending of the truss bars, can be
expressed by Eqs. (4), (5), (6) and (7) in the form

V = lp\l + l±\l+UB- z Sk5Lk ;

in view of Eqs. (8), (9), and (10), this reduces to

V = — o o + Ub + X0 ̂ 2 Si ' 8t .
Z Z £ = 1 k

Similarly, the potential energy in the unbent state is given by
1 1 m

V* = - | p\l + 2 Z X f.

Thus, criterion (20) now takes the form

1* _ F* = x Z (Xf — X*)(X{ + X*) + Lb + X0 Z Sl0)Sk > 0
-s £-1

4For a discussion of this question see Kef. [3].
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which, by Eqs. (11a) and by considering only states in the neighborhood of the un-
buckled state, is finally expressed as

V - V* = £ Sk5k + UB > 0, (21)
k

where the equality sign applies to the case of neutral equilibrium, with the bent state
represented by the first buckling mode. The stability criterion (21) can also be demon-
strated directly. In fact, if the arbitrary set of deflection curves yk(x) be developed in
a Fourier series

yk{x) = cttjI(x) .
T = 1

in which t)'k(x) represents the normalized buckling mode associated with the positive
load parameter \'0 , it can be shown, by a series of partial integrations and by virtue of
the orthogonality of the normal modes, that

Z SkSk + UB = ± ~ A„).
k r = 1

The right side of this equation is positive definite if \0 <\l, i.e. when the load parameter
is smaller than the smallest buckling load.

Lower bounds to the ultimate load. After these preliminary remarks, we now pro-
ceed to state the first theorem. In what follows, we shall call a load parameter X0 > 0
"critical" if there exists a set of prestressing parameters \* (r = 1, 2 • • • m) such that
the truss is in neutral equilibrium with its force system defined by (X0 , X* , • • • X*).
With this definition, which is analogous to that of a "statically admissible multiplier"
in rigid-plastic limit design [4], we state

Theorem I: The ultimate load is the largest of all critical loads.

From this theorem we deduce the following

Corollary: If an arbitrary internal force system, and an external load system iden-
tified by Ao, satisfy the force equations of equilibrium, and if the truss, with its forces so
defined, is in stable equilibrium, then

Xo > X^ . (22)

It is clear that this corollary establishes an easily calculable lower bound to the ultimate
load since the stability of a truss for a given force system can be determined by a number
of stability criteria [5, 6].

Proof: It can readily be verified that if the prestressing parameters be so selected
that X* = X" (r = 1, 2 •* • • m), Eqs. (3) and (12a) are identically satisfied by

Xr s X" (r = 0, 1, 2, • • • m)

for all values of m- In other words, in this "special case", the truss buckles similarly
to a statically determinate truss under constant external loads and internal forces.5

5It has been shown previously [7] that this case corresponds to a stationary value of the buckling
load. See also Eq. (18).
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Inspection of Eq. (11a) shows that the buckling mode of the special case is such as to
satisfy

£&r)5* = 0. (r = 1,2, • • • m) (23)
k

If now the stability criterion (21) be applied to a truss in stable equilibrium under an
external load , and if the arbitrary deflection curves be so selected as to coincide
with the buckling mode of the "special case", it follows from Eqs. (23) that

V — V* = K Z Sl0)8k +UB>0.
k

Since, also by Eqs. (21) and (23),

K £ s[0)bk + UB = 0,
k

and since further UB is positive definite, it follows that

AS > \'o . (22)
Upper bounds to the ultimate load. Before proceeding to the discussion of upper

bounds to the ultimate load, it is useful to state the following

Lemma I: For a given set of prestressing parameters, the value of the critical load
of a truss is not reduced by increasing the moment of inertia of a bar.8

Proof: As stated before, a truss is in stable equilibrium only if the matrix of the
coefficients a,-,- is positive definite, or

<3 = * Z E > 0 (24)* i
where the equality sign applies only to the trivial case 0, = 0 (i = 1, 2 • • • n). By re-
arranging the terms in the double sum, this can be expressed [8] in the form

Q = I Z SkLk[(*k coth ei - ir\et + e'kf + {ik)-\ek - etf coth tk], (25a)
k

where ek is defined by

" 0. > -*'■ (25b>
and where 6k and d'k are, respectively, the rotations of the two joints connected by the
k-th bar of moment of inertia Ik .

Let us now assume that a truss T is in stable equilibrium for a given set of internal
and external forces, and consider the equilibrium, under the same force system, of a
truss T' which is identical with T as to its geometric and elastic properties, except
that the moment of inertia of its m-th bar has been increased, i.e.

I' > I .
If this bar be a tension member, it follows from Eq. (25b) that

(O2 <

'This lemma, which has immediate physical appeal, is analogous to a similar principle of Rayleigh
dealing with the natural frequencies of vibration of elastic systems.
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and, by inspection of Eq. (25a), that the value of the m-th term in the series has not
decreased. The same can readily be demonstrated for compression members, which
correspond to imaginary values of e, and for unstressed members. Consequently, for
any given set of joint rotations,

Q' > Q;
in view of Eq. (24), the truss T' is therefore also in stable equilibrium.

As a next step, it is easy to establish the following

Lemma II: The value of the ultimate load of a truss is not lowered by increasing
the moment of inertia of a bar.

Proof: This is a direct consequence of the previous lemma and of Theorem I. In
fact, if the prestressing parameters X* (r = 1, 2 • • • m) be so selected as to make the
critical load X0 equal to the ultimate load Xo for truss T, it follows from Lemma I that,
for the same X* , the critical load Xo of truss T' satisfies the relationship

Xo > X0 = \o .

On the other hand, it follows from Theorem I that the ultimate load \'0" of truss T' is
the largest of all critical loads of T', or

K" > Xo
which, in view of the foregoing, implies

Xr > \"0 . (26)
An upper bound to the ultimate load can now be established by means of the fact

that a truss of m-th degree of redundancy can be converted into a rigid-link mechanism
of one degree of freedom by considering it pin-jointed and by removing I members,
where I < m + 1. In general, it will be possible7 to select these I members in such a
way that the mechanism so created is capable of joint velocities corresponding to a
shortening of all the eliminated bars.

If now these I members be assigned compressive forces

Sk = -WEkIk{Lky2 (k = 1, 2, • • • 0 (27)

and if the remaining bar forces be so chosen as to satisfy the force equations of equili-
brium (2a) for X0 = X0" > 0, then, by

Theorem II:

Xo < K' • (28)

In other words, the load parameter found by the method described above represents
an upper bound to the ultimate load.

The proof of this follows from the second lemma. In fact, since Eq. (27) defines
the buckling load of a column which is fixed at both ends, it is apparent that X" can
be interpreted as the ultimate load of a truss which is identical with the truss under

'Otherwise, the truss does not exhibit an ultimate load, i.e., the load increases indefinitely during
buckling.
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consideration except that all bars other than the selected I bars described above have
infinite moment of inertia. Thus the second lemma implies the relationship (28).

It should be pointed out that the practical usefulness of the upper bound defined
by Theorem II is sharply limited. A more detailed discussion of this question can be
found elsewhere [3]; suffice it to state here that the theorem is much less broad in scope
than a similar one establishing upper bounds to the collapse load of a plastic-rigid
frame. [4] This is due to the fact that it has not been possible to construct an infinity
of readily calculable "kinematically admissible" collapse modes by any simple process
analogous to the insertion of a sufficient number of yield hinges. Fortunately, except for
the purpose of estimating the degree of accuracy attained, the interest of the engineer
is focused on the lower bound only, which can be made to approach the exact value of
the collapse load as closely as desired.

Conclusion. Two principles have been derived which establish lower and upper
bounds to the ultimate load sustained by a buckled redundant truss. Of these, the lower
bound permits an approach to the exact value from below within any desired degree of
accuracy.
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