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ON THE GAPS IN THE SPECTRUM OF THE HILL EQUATION*
By C. R. PUTNAM (Purdue University)

1. Let / = f(t) be a real-valued, continuous, periodic function of period 1, so that

/(<) ~ £c, exp (2ir int), (c_„ = c„), (1)
n= — oo

and consider the Hill equation

x" + (X + f(t))x = 0, (Xreal; ' = d/dt). (2)

It is known that (if / ^ 0) there exists a sequence of closed intervals Ik: \k < X < Xh
(region of stability), where X* < X* < Xt+l and k = 1,2, • • • , with the property that
(2) has some solution x ^ 0 which is bounded on — oo < t < if and only if X belongs
to the closed set S = Ik; cf. [7], p. 14. The complementary set of S consists of a half-
line — 0° < X < Xj and the sequence of open intervals Jk: X* < X < Xt+1, k = 1,2, • • • .
In several recent papers, various lower bounds for the value Ai , the least point of the set
S, in terms of the Fourier coefficients c„ of f(t), have been obtained; [11], [5], [3], The
present note will be devoted to the problem of obtaining estimates (upper bounds) of
the lengths Xfc+1 — X* of the "gaps" Jk of the set S in terms of these Fourier coefficients.

It follows from [4], p. 613, that the length of every gap Jk is surely not greater than
CO

lim sup /(<) - lim inf /(<) < 4 3D | c„ |. (3)

In addition, asymptotic estimates, as X —> oo, for these gaps are known; [2], In fact, since
fit) is uniformly continuous on 0 < t < , the lengths Xt+1 — X* of the intervals Jk
tend to zero as X*+1 —; loc. ext., p. 850. Furthermore, additional regularity conditions
on /(t) result in more refined estimates. It should be pointed out here that the investiga-
tions of [2] related to singular boundary value problems ([8]) on the half-line 0 < t < oo
determined by (2) and a linear, homogeneous boundary condition at t = 0, and were not
confined to the special case that /(<) be periodic.

Let m(X), for — oo < X < oo; be defined to be the distance from X to the set S con-
sidered above, so that

m(X) = g.l.b. | X - n |, in S. (4)
It will be shown in section 2 below that m(X) satisfies the inequality

CO

m2(X) < 2 X) I c» |2> provided X > —c0 . (5)
n— 1

As a consequence of (4) and (5), one readily sees that the lengths \k+1 — \k of the gaps
Jk satisfy

/ « \l/2 1
xi+, - \k < 2[2 X I rj , provided ^ + x*) ̂  ~c° • (6)

It will remain undecided whether (6) actually must hold for all gaps Jh , so that the
first inequality of (6) would hold without the proviso of the second inequality. In any
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case, it is readily seen that the estimate of (6), when it applies, is an improvement over
that of (3), namely 4 X^-i | c„ |.

In this connection, it should be pointed out that Kato [3], by an adaptation of a
relation used by Wintner [11], has obtained the inequality

Xl ^ Co ( o ) ^ - i
I 2

for the least point Xi of the set S. (Wintner had previously shown that X„ > — c0 — 2-
I °n |2-) Consequently, it is easily seen that the first inequality of (6) is surely valid

for all gaps Jk if, for instance, the inequality
V 1/2/ CO \l

z i c. t < (2 z i r)
n—1 \ n=1 '

holds. (If one normalizes / so that its mean value is zero, hence c0 = 0, this last inequality
is equivalent to /J /2 dt < 256).

Before proceeding to the proof of (5), it can be noted that the first inequality of
(5) surely becomes false if the restriction X > — c0 is dropped. In fact, if f(t) = c0 , so
that (2) becomes the differential equation of the harmonic oscillator, then Z«-i I c„ |2 = 0,
and (5) yields the known result that m(X) = 0 for X > —c0 . However, m(X) > 0 for
X < — c0, since S is the half-line — c0 < X < .

2. The proof of (5) will depend upon certain results obtained in [6]. Let gi(t), g2(i), ■ • • ,
denote a sequence of functions possessing continuous second derivatives on 0 < t < «>,
satisfying

!7n(0) = g'M = 0, (7)
and such that gn(t) —> 0 uniformly on every finite ^-interval [0, T], Then, if gn and L(gn)
(where L(x) = x" + fx) are of class L2 [0, 00), the inequality

m2(X) lim inf f gl dt < lim inf f (L(gn) + X</„)2 dt (8)
n—»co J 0 n—>oo J 0

holds. This follows readily by a method analogous to that given in [6], p. 580. (It is to be
noted that the set S considered above is identical with the invariant spectrum (Weyl
[8], p. 251) associated with the differential equation (2); [9], [1]. Moreover, the investi-
gations of [6] related to the Weyl theory of singular boundary value problems, alluded to
in section 1.)

Next, let m > 0, and let gn = ynh, where h = sin (^t) or h = cos (/A), and the
yn = yn{t) are functions possessing continuous second derivatives on 0 < t < °°. In addi-
tion, suppose that 2/„(0) = y'n(0) = 0, so that (7) certainly holds, and that yn and L(y„)
belong to L2(0, °°). Finally, suppose that the y„ are such that the "lim inf" appearing
on the left side of the inequality (8) can be replaced by "lim" for both h = sin (nH)
and h = cos (^t).

It follows from (8) that

m2(X) lim [ ylh2 dt < lim inf [ ([y'n' + (X - M + f)y„]h + 2y'Ji'f dt.
n—*oo J 0 n—»oo *' 0

If now the yn satisfy

[ y'n2 dt-> 0, [ y'n'2 dt -> 0, (n ®),
Jo Jq
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it is seen that

m !(X) lim f y2nh2 dt < lim inf f (X — n + ffylh2 dt. (9)
n—»co J 0 »-♦<» " 0

Since (9) holds for both functions h, addition of the two corresponding inequality rela-
tions yields, in view of the fact that lim inf A + lim inf B < lim inf (A + B), the in-
equality

m2(X) lim f yldt < lim inf f (X — /x + f)2y2n dt. (10)
n—»co J 0 n-* oo J 0

Let T > 0 and define the function YT(t) on 0 < t < » so that the graph of Y T(i)
on 0 < t < T consists of three line segments joining, in order, the four points (0, 0),
(1, T_i), (T — 1, T_i), and (T, 0). On T < t < <», let YT(t) = 0. It is clear that the
corners of this function can be smoothed out so as to obtain a function yT(t) satisfying
the conditions imposed upon the y„ above. Furthermore, it is clear that if yn = yT. ,
where T = Tn—»<» asn—><», one can arrange that the functions yn be such as to make
(10) imply

m (X) < lim inf S'1 [* (\ - » + f)2 dt, (ji > 0). (11)
5—»oo J 0

(It is clear that the inequality n > 0 in (11), and not merely ju > 0, can be allowed.)
Now suppose that X > —c0 and choose n > 0 so that X — it = —c0 . Then (11), (1),
and the Parseval relation yield

m2(X) < [1 (-co + /)2 dt = 2 Z | cn |2,
J 0 n-1

so that the relation (5) is now proved.
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