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ON THE GAPS IN THE SPECTRUM OF THE HILL EQUATION*
By C. R. PUTNAM (Purdue University)

1. Let f = f(¢f) be a real-valued, continuous, periodic function of period 1, so that

f) ~ 22 coexp (2rint), (e = G, (1

and consider the Hill equation
2 4+ N+ f(D)x = 0, (Areal; ' = d/di). (2)
It is known that (if f # 0) there exists a sequence of closed intervals I,: A, < A < A\*
(region of stability), where A\, < \* < A,y and k = 1,2, --- , with the property that

(2) has some solution z # 0 which is bounded on — © < ¢ < » if and only if A belongs
to the closed set S = D_ I, ; cf. [7], p. 14. The complementary set of S consists of a half-
line — o < A < )\, and the sequence of open intervals J, : \* <X < N\pyy , kb =1,2, -+ .
In several recent papers, various lower bounds for the value A, , the least point of the set
S, in terms of the Fourier coefficients c, of f(¢), have been obtained; [11], [5], [3]. The
present note will be devoted to the problem of obtaining estimates (upper bounds) of
the lengths A,.; — A* of the “gaps” J, of the set S in terms of these Fourier coefficients.

It follows from [4], p. 613, that the length of every gap J. is surely not greater than

lim sup f(f) — lim inf f() < 4 i | e |- 3

t— t—o

In addition, asymptotic estimates, as A* — o, for these gaps are known; [2]. In fact, since
f(t) is uniformly continuous on 0 < ¢ < o, the lengths A\;.; — A* of the intervals J,
tend to zero as Ay, —; loc. cit., p. 850. Furthermore, additional regularity conditions
on f(¢) result in more refined estimates. It should be pointed out here that the investiga-
tions of [2] related to singular boundary value problems ([8]) on the half-line 0 < ¢ <
determined by (2) and a linear, homogeneous boundary condition at ¢ = 0, and were not
confined to the special case that f(¢) be periodic.

Let m(\), for —© < A < «, be defined to be the distance from A to the set .S con-
sidered above, so that

m\) =glb.|A—gu], win&. ()

It will be shown in section 2 below that m(\) satisfies the inequality

m) <2 > l¢c.]’, provided N> —c. (5)

n=1

As a consequence of (4) and (5), one readily sees that the lengths A, — \* of the gaps
J;, satisfy

© 1/2
Mewr — N L 2(2 > e, Ig) , provided %O\,‘H + A > —¢. (6)
n=1

It will remain undecided whether (6) actually must hold for all gaps J, , so that the
first inequality of (6) would hold without the proviso of the second inequality. In any
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case, it is readily seen that the estimate of (6), when it applies, is an improvement over
that of (3), namely 4 > v, | ¢, |.

In this connection, it should be pointed out that Kato [3], by an adaptation of a
relation used by Wintner [11], has obtained the inequality

v e - (D) e

n=1

for the least point A, of the set S. (Wintner had previously shown that \, > —c, — 2-
w1 | €. |.) Consequently, it is easily seen that the first inequality of (6) is surely valid
for all gaps J, if, for instance, the inequality
© © 1/2
(é) 2lals< (2 2 e I’)
holds. (If one normalizes f so that its mean value is zero, hence ¢, = 0, this last inequality
is equivalent to [o f* dt < 256).

Before proceeding to the proof of (5), it can be noted that the first inequality of
(5) surely becomes false if the restriction A > —¢, is dropped. In fact, if f(f) = ¢, , so
that (2) becomes the differential equation of the harmonic oscillator, then Y oy | ¢, |° = O,
and (5) yields the known result that m(A) = 0 for A\ > —¢, . However, m(A) > 0 for
A < — ¢, since S is the half-line —¢, <\ <.

2. The proof of (5) will depend upon certain results obtained in [6]. Let g, (£), g=(9), - - -,
denote a sequence of functions possessing continuous second derivatives on 0 < ¢ < »,
satisfying

0.(0) = /(0 = 0, @)

and such that g,(f) — 0 uniformly on every finite ¢-interval [0, T'). Then, if g, and L(g.)
(where L(z) = 2" + fz) are of class L? [0, «), the inequality

m?(A) lim inf f g dt < lim inf f " (L(g) + Mg dt )

n—o n—o

holds. This follows readily by a method analogous to that given in [6], p. 580. (It is to be
noted that the set S considered above is identical with the invariant spectrum (Weyl
[8], p. 251) associated with the differential equation (2); [9], [1]. Moreover, the investi-
gations of [6] related to the Weyl theory of singular boundary value problems, alluded to
in section 1.) ‘

Next, let » > 0, and let g, = y.h, where b = sin (u*) or h = cos (u}), and the
Ya = ya(t) are functions possessing continuous second derivatives on 0 < ¢ < . In addi-
tion, suppose that y,(0) = y.(0) = 0, so that (7) certainly holds, and that y, and L(y.)
belong to L?(0, «). Finally, suppose that the y, are such that the “lim inf’’ appearing
on the left side of the inequality (8) can be replaced by “lim” for both A = sin (u*)
and & = cos (u't).

It follows from (8) that

) lim [y de < liminf [ (@l + O = 0+ Dyl + 20 dt.
n—o J0 n—w Jo

If now the y, satisfy

[urai—o, [ yrd—o,  @— e,
0

Jo
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it is seen that

m'0) lim [ 422 dt < liminf [ O — u + N d. )
n—o JO fN—© 1]

Since (9) holds for both functions %, addition of the two corresponding inequality rela-
tions yields, in view of the fact that lim inf 4 + lim inf B < lim inf (A + B), the in-
equality

m*O) lim f “dt<liminf [ O — g+ % dt. (10)
n—o V0 n—s ]

Let T > 0 and define the function Yr(f) on 0 < ¢ < « so that the graph of Y z(f)
on 0 < ¢t < T consists of three line segments joining, in order, the four points (0, 0),
A, TH (T -1, T, and (T,0).0nT < t <o, let Yr(f) = 0. It is clear that the
corners of this function can be smoothed out so as to obtain a function yr(f) satisfying
the conditions imposed upon the y, above. Furthermore, it is clear that if y, = yr. ,

where T = T, — o asn — =, one can arrange that the functions y, be such as to make
(10) imply

) < liminf 57 [ O —ut a2 0, an

(It is clear that the inequality p > 0 in (11), and not merely u > 0, can be allowed.)
Now suppose that A > —c, and choose ¢ > 0 so that \ — p = —¢, . Then (11), (1),
and the Parseval relation yield

w < [ (ot a=23 e

so that the relation (5) is now proved.
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