
411

LINE LOAD APPLIED ALONG GENERATORS OF THIN-WALLED CIRCULAR
CYLINDRICAL SHELLS OF FINITE LENGTH*

BY

N. J. HOFF, JOSEPH KEMPNER, and FREDERICK V. POHLE
Polytechnic Institute of Brooklyn, Brooklyn, N. Y.

Summary. Donnell's differential equations of the thin circular cylindrical shell are
integrated in the case when the loads are radial forces or circumferential moments
distributed sinusoidally along a generator. Closed form expressions are obtained for
the displacements, internal moments, and the membrane stresses. In addition, loads
distributed uniformly along a segment of a generator and concentrated loads are dis-
cussed and radial forces are combined into a longitudinal moment.

1. Introduction. One of the most common elements of structures and machinery is
the thin-walled circular cylindrical shell. When other elements are attached to it, forces
and moments are likely to be transmitted to the shell across the areas of contact because
of gravity and inertia effects, and in consequence of thermal expansion. These forces
and moments can often be represented, with an accuracy sufficient for engineering
purposes, as loads distributed along a short segment of a generator. For this reason it is
of practical interest to investigate the deformations and the stresses of thin-walled
circular cylindrical shells loaded along generators.

The problem of loads along generators was first solved by Finsterwalder [1] in 1932
in his investigation of the disturbance stresses arising at the free edge of a circular
cylindrical shell-type roof structure. In his approximate theory the longitudinal moment
Mx and the torque Mxv in the shell were disregarded and a single partial differential
equation in the circumferential moment Mv was derived. This approach was further
simplified by Schorer [2] in 1935 whose differential equation in Mv consisted of only
two terms. In the same year Dischinger [3] derived a rigorous solution. In order to
reduce the large amount of work necessary to obtain numerical results from the rigorous
theory, Aas Jakobsen [4] developed an iteration procedure in 1939 through which the
equilibrium conditions could be expressed with sufficient accuracy in terms of the radial
displacement w alone. In 1941 he showed [5] how this approach could be used in the
calculation of the effects of concentrated loads.

The concentrated load problem was attacked independently by S. W. Yuan [6] in
1946 who solved Donnell's single eighth order differential equation in w for an indefinitely
long shell. The surface loading was represented by a Fourier series in the circumferential
direction and by a Fourier integral in the longitudinal direction. The method of images
was then used to obtain a solution for the cylinder of finite length. In the same year
Odqvist [7] gave a closed form solution for the deflections of finite cylinders subjected
to sinusoidally distributed line loads and infinite series solutions for the deflections of
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finite cylinders subjected to concentrated loads. These results were obtained from
Schorer's equation.

Although the work of German and Scandinavian civil engineers seems to indicate
that the moment Mx and the torque Mxv are unimportant in the balance of forces and
moments in a reasonably long shell-type roof subjected to distributed loads, the same
conclusion need not necessarily hold when line loads or concentrated loads are applied
to the structure. Indeed, in the experiments performed by Schoessow and Kooistra
[8], in which forces and moments were transmitted to a shell by means of comparatively
large-diameter pipes, the ratio of the maximum longitudinal bending stress to the
maximum circumferential bending stress was found to be close to one-half. Therefore
some doubt arises regarding the range of applicability of Schorer's equation. But Odqvist's
paper, based on this equation, is the only one to present results from which the stresses
in the shell can be obtained without extensive calculations. This situation prompted
the development of the new solution given in this paper.

In the derivations that follow the stipulation of the conditions of equilibrium in the
forms presented by Love [9], Fliigge [10], Biezeno and Grammel [11], and Timoshenko
[12] is replaced by the simplified statement proposed by Donnell [13] and recently
recommended by Batdorf [14], In addition to the eighth-order differential equation in
the single dependent variable w, used and re-derived by Yuan, two fourth order equa-
tions are satisfied rigorously. The dependent variables are u and w in one equation,
and v and w in the other; w is the radial displacement, u the longitudinal displacement,
and v the circumferential displacement. Closed form solutions are given for the dis-
placement, moment, and membrane stress quantities arising from sinusoidally distributed
line loads. Series of these solutions are capable of representing the effects of loads constant
over segments of generators as well as those of concentrated loads.

2. Basic equations. In the absence of surface and body forces Donnell's [13] equili-
brium conditions of an element of a thin-walled circular cylindrical shell can be stated in
the following form:

V*w + 4XV„« = 0, (1)

V4w = VW,X„ - w,XfV , (2)

W = (2 + v)w.xxv + w,Vfr , (3)

where the subscripts following a comma indicate differentiation,

4K* = 12(1 - v)(a/h)2, D = Eh3/{12(1 - ,*)], (4)

and V2 is Laplace's operator

V2 = (d2/dx2) + (d2/V). (5)

The non-dimensional distances and displacements are defined by the equations

x = (x*/a), u = (u*/a), v = (v*/a), w = (w*/a), (6)

and x* is the distance measured in the axial direction along a generator, a<p that measured
around the circumference, and u*, v*, and w* are the displacements in the axial, circum-
ferential, and radial directions, respectively, as shown in Fig. la. The remaining geo-
metrical and physical quantities are a, the mean radius of the shell; h, the thickness of
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the shell; L, the length of the shell; E, Young's modulus of elasticity; and v, Poisson's
ratio.

Fig. la.

In Donnell's approximation and with the present sign convention the strains e and
the curvatures k of the median surface of the shell are defined as

€* ~ U.x j Kx t: (l/cO'W.x* t

— v,v — w, kv = (I/a)w,vv , (7)

yip v,x t Kzip {1 /ci)w tXV .

The membrane stresses can be given as

= [E/{ 1 - „*)](€, + vef) = [E/{ 1 - ,*)](«.. + w,v - vw),

<rv = [E/{ 1 - /)](?*, + ep) = [E/( 1 - v*)](yu,x + v, , - w), (8)

= [E/2(1 + v)]7xy = [E/2(1 + v)](u,t + ftI).

The moment-resultants per unit length are indicated as right-hand vectors in Fig.
lb. They are

Fig. lb.
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Mx - -D(k, + vkv) = — (D/a)(w,xx + vW.rv),

Mv = —D(?kx + kv) = —(D/a)(w,vv + vw,xx), (9)

Mzv = — Mrx = (1 — v)Dkxv = [(1 — v)D/a]w,xv .

The shear forces per unit length which accompany these moments and act in the
radial direction are

Qx = (l/a)(Mx.x + Mrx.r) = —(D/a2)(w,xxx + w,xvr)

(10)
Qv = (l/a)(Mv,v - Mxr.x) = -(D/a2)(w,rvv + w,„f)

If the equivalent shear (1 /a)Mvx.x corresponding to the distributed torque is added
to Qv in agreement with Kirchhoff's suggestion (see, for instance, p. 90 of Reference
12), the total effective shear force per unit length is

Qv.ett. = -(-DAOK„„„ + (2 - v)w,xx<p] (11)
3. Sinusoidally distributed radial force symmetric with respect to x = 0. It is

assumed that the edges x* = (L/2) are simply supported. This condition implies that
the radial displacement w vanishes and so do the axial membrane stress and the axial
moment resultant, but not the membrane shear stress. If the expressions just given
for these quantities are considered, the simple-support condition can be reduced to the
following requirements:

u,x = v = w = wiXX = 0, when x = ±(l/2)(L/a). (12)

The load is applied along the generator <p = 0 in the radial inward direction and is
2V cos nx with n = mir(a/L) and m an odd integer. With — ir < <p < ir, the solution is
assumed as

Wtot = w(<p) + w(2v — (p) + w(2tt + ip) + w(4ir — <p) + w(4t + <p) + • • • , (13a)

wtot — u(<p) + u(2ir — <p) + u(2t + <p) + w(4tt — (p) + w(4x + <p) + ■ • • , (13b)

tf,ot = v{<p) ~ v(2ir — <p) + v(2ir + <p) — v(4ir — <p) + v(4:w + <p) — • ■ • , (13c)

where the dependence on x is not shown but is understood, and

w(<p) = Aevv cos nx, (14a)

u(<p) = Bevv sin nx, (14b)

v(ip) = Ce"" cos nx, (14c)

where A and n are assumed real and B, C, and p may be complex. These displacements
can be imagined to be contributed by two fictitious sheets of width L, each beginning
at <p = 0 and winding around the actual shell indefinitely many times, one clockwise
and the other counterclockwise. Only those solutions will be considered in this analysis
in which the real part of p is negative.

It can be seen that the assumed deflections satisfy the boundary conditions at
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x = ±(1/2){L/a). In the circumferential direction they are continuous everywhere
except at ^ = 0. By a suitable choice of the conditions along the generator <p — 0, con-
tinuity can be enforced there and the prescribed line load can be applied to the shell.
Worked-out numerical examples have shown that in most cases the first term of the
infinite series suffices for a satisfactory approximation to the deflections, and two terms
are needed only infrequently.

The boundary conditions at <p = 0 are:

(1) For reasons of symmetry

w,v = 0 when <p = 0. (15)

(2) To eliminate gaps caused by the circumferential displacements

v = 0 when <p = 0. (16)

(3) The shear stress rxip acts in the same direction along the edges of the two sheets
at <p = 0. In the absence of a longitudinal line load, txv must vanish. Hence

u,r + vfX = 0 when ip = 0.

But v_x vanishes at <p — 0 in consequence of (16). Therefore the requirement reduces to

u, = 0 when <p = 0. (17)

(4) Finally the total effective shear force Q<peI, , given in (11), must be equal to
one-half the applied radial load. However the second term in the brackets vanishes in
consequence of (15) with the result that

(.D/a2)w,vvv = V cos nx. (18)

4. Enforcement of the differential equations. Substitution into (1) of the expression
assumed for w yields

[(p2 - n2)4 + 4XV]w = 0 (19)

which must be satisfied identically. Hence

p2 =n* + V2 (-1 )'/4nK.

If the fourth root of —1 is taken as (V2/2)(l —i) then

pi = n2 + (1 — i)nK, (20)

and if pl is written as

Pi = -ai + iffi ,
where at and ffi are positive real numbers, one has

ol\ — ff i = n(n + K), (20a)

aA = (1/2)71^, (20b)

ff1 = (1/2XnK/aJ. (20c)
Finally

al = (n/2){(» + K) + [(n + K)2 + K2]U2\. (20d)
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The square root is taken with the positive sign because ai must be real by assumption.
When the choice is

(_!)•'« = (V2/2)(-l - i),
the value of p is designated as p2 . The above equations are replaced by

Pi — ot2 iff2 j
and

~ Pl = n(n - K), (21a)

a202 = (1/2 )nK, (21b)

ft = (1/2 )(nK/a2), (21c)

= (n/2){(» - K) + [(» - KY + K2]1'2}- (21 d)

The conjugate solutions, corresponding to the remaining two fourth roots of —1,
namely

p3 = -<*! — if3, , p4 = —a2 - ifi2

need not be discussed here in detail because they are governed by the same relation-
ships as pi and p2 , respectively.

Of course the solutions for and at of (20d) and (21d) can be negative as well as
positive. The negative values are rejected because they lead to positive real parts of the
exponent p and thus yield displacements which increase without bounds as <p increases.

If the deflections assumed in (14) for u and w are substituted in equilibrium con-
dition (2) one obtains

B{p\- n2)2 = An(m2 + p2). (22)

Consequently

B = Avn3[l/(p2 - n2)2] + An[p2/(p2 - n2)2]. (23)

When p = pl one has

(p] - n2)2 = -i{2K2n2), l/(p] - n2)2 = +[i/2K2n2],

p?/(p! - n2)2 = (1/2Kn) + i[(n + K)/2K2n].

Equation (23) becomes

B = (A/2K2){K + i[(l + v)n + K]} when P = Pi • (24)

When p = p2 the equations following (23) become

(pl - n2/ = i(2K2n2), 1 /(pl - n2)2 = ~[i/2K2n2},

p\l(p\ - n2)2 = —(l/2Kn) - i[(n - K)/2K2n]

and thus

B = (A/2K2){-K - i[(l + v)n - K)} when p = p2 . (25)
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Substitutions from (14a) and (14c) into (3) result in

C(p2 - nf = Ap[p2 - (2 + v)n2]. (26)

Manipulations similar to the ones shown lead to

C = (.A/2K2n){ -aiK + ft[(l + v)n - K] + i[^K + «,[(1 + v)n - X])} (27)
when V — Vi and to

C = (A/2K2n){a2K - ft[(l + v)n + K] + »{-pjZ - «,[(1 + ,)n + X]}} (28)
when p = p2 .

Instead of making use of all the four exponents pi to p4 , it is more convenient to
give the radial deflections w in the following form:

w = [(^4x72 + A2T)ev"p + (A3R + AJ)ev"'] cos nx. (29)

Here the expressions in parentheses are operators with R signifying the real part and /
the imaginary part of the complex function upon which the operation is performed.
Equation (29) can be written explicitly as

w = [Ale~a"f cos I3i<p + A2e~°"v sin /3,<p + A3e~""p cos fi2>p + Atf""* sin /32<p] cos (nx).
(30)

From (14b), (24), and (25) one obtains

u = (ili# + A2I)(1/2K2){K + i[(l + v)n + X]Je~a,,,(cos 0i<p + isin ^t<p) sin (nx)

+ (A3R + AJ)(\/2K2) { —K — i[(l + v)n — X]}e~'""'(cos p2<p + i sin $&) sin (nx). (31)

When the operations indicated are performed, (31) becomes

u = (AJ2K2)e~atV [K cos 0x<p — [(1 + v)n + K] sin i8,^>} sin nx

+ (A2/2K2)e~a"' {[(I + v)n + K] cos 0, <p + K sin (}&} sin nx
(32)

+ (A3/2K2)e °"v { — K cos (}2<p + [(1 + v)n — K] sin /32<p) sin nx

+ (Ai/2K2)e~""p {— [(1 + v)n — K] cos /32<p — K sin 02<p} sin nx.

The circumferential displacement is found in a similar manner:

v = (At/2K2ri)e~°"*{ {—axK + ^,[(1 + v)n — if]) cos /3,<p

— {^K + [(1 + v)n — sin ^{(cos nx)

-|- (A2/2K2n)e c*i[(l -(- v)n — X]j cos f3i>p

+ {— + /Si [(1 + v)n — K]} sin /3,^}(cosnx)

+ (A3/2K2n)e""v{ [a2K - ft[(l + v)n + K]) cos/S2V>

+ {/32K + a2[(l + v)n + X]} sin /32^>} (cos nx)

+ (Aj2K2n)e~-v{ { -02K - «2[(1 + v)n + K]\ cos

+ \a2K — j82[(1 + v)n + X]} sin /32^}(cos nx). (33)
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5. Enforcement of the boundary conditions at <i> = 0. From (29)

w,v = [(.4,/t! + A2I)plev"p + (A3R + Air)p2e°'v] cos (nx).

At (p = 0 the function w,v must vanish. Hence the requirement contained in (15) leads
to

{AJi + A2I)p i + (^4372 + AJ)p2 — 0. (34)
This can also be written as

—cxiAi -f- A2 — <x2A3 -f- /32At = 0. (35)

From (16) and (33) one obtains

{-a.K + /3,[(1 + v)n - K])A, + {ftX + «,[(1 + v)n - K])A2

+ \a2K — /32[(1 + v)n + K\}A3 -f- {—f}2K — a2[(l + v)n + K])Ai = 0. (36)

To satisfy the conditions expressed by (17), u,f must be calculated:

u,f = (1/2K^iAiR + A2I){K + *[(1 + v)n + K]}Vl^v sin (nx)

+ (1/2K2)(A3R + AJ)[-K - »[(1 + v)n - K]}pJ" sin (nx).

Evaluation of this expression for <p = 0 results in

{— aiK — |8i[(l + v)n + + {PiK ~ ai[(l + v)n + K]]A2

+ {a2K + ft[(l + v)n - K]\A3 + {-p2K + «,[(1 + v)n - K]}A< = 0. (37)

From these conditions At , A2, and A3 can be expressed in terms of A4 :

v*i + Pi/W — /V

- fc-rrlX^f K - »
- t^)A- ■ (40)

In the calculation of the shear, m,»„ is needed. From (29) one obtains

w,rvr = [(AiR + A2I)p?e"r + (A3R + AiT)p\ev"f] cos (nx).

At (p = 0 this equation becomes

w,vipv = [(AXR + A2T)p\ + (ASR + AJ)p\] cos (nx). (41)

Evaluation of the operations indicated in (41) and substitution in (18) result in

V = ~{D/a){(a\ - 3at0OAl + (fi - 3ifcaJJA,

+ (a* - 3a2tf)A3 + (A - 3PtocDAt}. (42)
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If the expressions given in (38), (39), and (40) are substituted into (42), manipulations
yield

V = ■iKn(D/a')(°^+^)Ai . (43)
\a2 — p2/

This can be solved for A4 :

A — — 0,2 (012 ~ M (44)
4 D AKn W + &)'

The other three constants can also be expressed directly in terms of the applied load:

A - V q2 A* ~
1 D AKn W + 0?/' (45)

^]- <46)/ al + Pl\
\«? + /s?/'

<47)

The expressions for the displacements u, v, and w are then as follows:

e-*xrV ^ f
u = 8K\D{al + /3? ̂ 2,3lX + + PM cos ̂

+ + n(l -f- j»)(aj — /3j)] sin frp}

+ 2 , „2 {[~2/32K — rc(l + ")(a2 — &>)] cos /?2<p
<*2 "T P2

+ [—2a2K + n(l + v)(ct2 + /32)] sin /32^>} f sin (n.r), (48)

Va2 ,
V = SK3n2D ^ cos Pl<p + W1 + ") — 2^1 sin Pi<p)

+ e~°'r{—n( 1 + v) cos P2<p + [n{ 1 + v) + 2K] sin /32<p}} cos (h.t), (49)

Va2 /w — e
^KnD \«i + pi ' ~(ai ~ ^ cos P1<p + ^ai + ^ sin 131<p'

e~a'v . \
+ 2 i „2 {(a2 + ft) cos /32<p + (a2 — 02) sin &#>} > cos («x). (50)"2 T P2 J

6. Constant radial force over segment of generator. The results obtained can be
used in the calculation of the displacements and stresses of cylinders subjected to
symmetric radial forces of all kinds. For instance, when the inward radial load is stipu-
lated as

(.P*/2S) when | x* | < 5 and as 0 when (L/2) > | x* | > 5 (51)
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it can be represented by the Fourier series

y. p*lm) P0S (rrnrax/L)
m ** l

with the coefficient p*im) defined as

p*(-> = (2P*/mir$) sin (rmrd/L) m = 1, 3, • • • . (52)

The displacements u, v, and w can then be calculated from (48), (49), and (50), re-
spectively, if V is replaced by (1/2)P*<m) and the resulting expressions are summed
over m. Naturally the summation indicated in (13) must also be carried out if the first
term alone does not give sufficient accuracy. However, this is seldom the case. The
summation causes no difficulties because the right-hand members of (13) are geometric
series.

If the coefficient bm is defined as

bm = (P*aL/4*3DK5)(l/m2) sin (mirS/L) (53)

substitutions and simplifications yield the following expressions for the mth components
of the moments and the membrane stresses:

M{xm)/[(— D/a)nbm cos nx] = 2 ■ ai {[—2vKa^ + n(l — f)(aj — ft)] cos ftp«i + ft

+ [2vK.fi! - n{ 1 - v)(ai + ft)] sin ftp}

+ 3 I q2 {[ — 2vKa2 — n(l — v)(a2 + ft)] cos ftp
<*2 + ft

+ [2vK02 - n( 1 - v)(a2 - ft)] sin ftp}, (54)

M(vm)/[(— D/a)nbm oos nx] = \ 2 {[ — 2Kax — n( 1 — v)(al — ft)] cos ftp
ffll T Pi

+ [2K/3i + n( 1 — v)(a, + ft)] sin ftp}

+ 2 . 02 {[ — 2Ka2 + n{ 1 — f)(a2 + ft)] cos ftp
a2 + ft

+ [27vft + n( 1 - v)(a2 - ft)] sin ftp), (55)

J/I;'/[(D/a)(l - x)rc&„ sin nx] = e~a,'[-cos ft,? + sin ftp]

+ e~°1,5[cos ftp + sin ftp], (56)

cos nx]

= t , „2 {[nai + (n + 2K)ft] cos ftp + [(n + 2.K>i - nft] sin ftp}
ai + Pi

+ 2 , 02 {[—na2 + (n - 2i£)ft] cos ftp + [(n — 2K)a2 + nft] sin ftp}, (57)
<*2 + ft

■ a i <p
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— a i ifi

/[(E/2K2)n2bm cos nx] = \ { —(a, + ft) cos ftp + (—+ ft) sin ftp)
T" ft

+ 2 . a2 {(a2 — ft) COS ftp — (a2 + ft) sin ftp}, (58)
«2 + ft

rl™*/[(E/2lC)nbm sin nx] = — e'"'" {cos ftp + sin ftp}

+ e~°"'{cos ftp — sin ftp}. (59)

When the load is concentrated at x = 0, the distance S approaches zero. In that case

Plm' = (2 P*/L), (60)
and

bm = (P*aL/iirDK) (1/m). (61)

7. Sinusoidally distributed radial force antisymmetric with respect to x = 0. The
load is applied along the generator p = 0 in the radial inward direction and is 2Fsin nx
with n = mir(a/L) and rn an even integer. The solution is assumed in the form of the
series (13) with

w - Aevv sin nx, (62a)

u = Bevv cos nx, (62b)

v = Cer"f sin nx, (62c)

where again A and n are assumed real while B, C, and p may be complex. The boundary
conditions at x = ±(1/2)(L/a) and at p = 0 remain unchanged except that

(D/a2)w,vvv = V sin nx. (63)

Solution of this problem leads to the same expressions for the constants /l, to A4 as
obtained earlier and presented in (44) to (47). Similarly the expressions given in (49)
and (50) for the displacements v and w are unchanged except for the replacement of the
factors (cos nx) by (sin nx); also in expression (48) for u the factor (sin nx) must be
replaced by ( — cos nx).

8. Loading by longitudinal moment. When the radial inward load along the gen-
erator p = 0 is stipulated as

M*/S2 when 0 < x* < S,

—M*/52 when — S < x* < 0, (64)

0 when (L/2) > | x* | > 8,

where M* is the applied longitudinal moment to which the line loading is statically
equivalent, the loading can be represented by the Fourier series

y', Mf<m) sin (mirax/L).
m-2,4, •••
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The coefficient M*lm) is defined as

M*'m) = (AM*/mirS*)[\ - cos (mxd/L)] m = 2, 4, • • • . (65)

The deflections u, v, and w can be calculated from (48), (49), and (50), respectively, if
V is replaced by (1/2the changes in sign and in the trigonometric expressions
stated in the preceding article are carried out, and the resulting expressions are summed
over m. Naturally the summation indicated in (13) must also be carried out if the first
term alone does not give sufficient accuracy. However, this is seldom the case.

If the coefficient bm is now defined as

bm = (M*aL/2ir2DKd2)(l/in)[l — cos (rmrd/L)] m = 2, 4, • • • (66)

the mth components of the moments and of the membrane stresses are again given by
equations (54) to (59) provided all factors (cos nx) are replaced by (sin nx) and all
factors (sin nx) by ( — cos nx).

When the moment is concentrated at x = 0, the distance S approaches zero. In that
case

Mim) = (2rM*/L2)m (67)
and

bm = (M*/4DK) (a/L). (68)
9. Sinusoidally distributed circumferential moment symmetric with respect to x = 0.

This problem differs from the symmetric sinusoidally distributed force problem only
in the boundary conditions at <p = 0. The solution is assumed in the form

Wiot = w{<p) — w( 2tt — <p) + w( 2t + <p) — w( 4x — <p) + w(4ir + <p) + • • • , (69a)

wtot = w0p) — w(2?r — <p) + w( 2tt + <p) — u{ 4x — <p) + u(4ir + tp) — • • • , (69b)

vlot — v(<p) + ^(2^ — >p) + f(2it + ip) + f(4ir — <p) + v(4tt + <p) + • • • , (69c)

w(<p) = Aevv cos nx, (70a)

u(<p) = Ber"e sin nx, (7Qb)

v(<p) = Cevv cos nx, (70c)

where the dependence on x is not shown but is understood, and A and n are assumed
real while B, C, and p may be complex.

Along the generator <p = 0 an external moment 2M cos nx is applied with n = mir(a/L)
and m an odd integer. The boundary conditions are

w = u = = 0 when <p = 0 (71)

Mvo = M cos (mirax/L) (72)

and Mv0 is the internal circumferential moment per unit length of the shell along the
cut at <p = 0.

It follows from (71), (31), (32), and (33) that
A, + A3 = 0, (73)

2AXK + A,[{ 1 + v)n + K] - A4[( 1 + v)n - K] = 0, (74)

2AlVK + A,[(l + v)n + K] - A«[( 1 + v)n - vK] = 0. (75)
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Solution of (73) to (75) yields
A4 = A3 = A2 — Ai . (76)

The fourth boundary condition (72) along <p = 0 gives

AJ = —(l/4ir)(ML/KD)(l/m). (77)
Hence the displacements can be written as

w — —(\/Air)(ML/KD)(\/rri)[e~a"f(cos — sin /3,<p)

— e~""'(cos + sin p2<p)] cos nx, (78)

u = (l/8ir)(ML/ii'3Z))(l/m){e~°"'{(l + v)n cos + [(1 + v)n + 2K] sin f3i<p)

— v)n cos i82<p — [(1 + v)n — 2K] sin P2<p}\ sin nx, (79)

v = (l/8Tr)(ML/K3D)(l/mn){e~axV{[(l + v)n(ai - 0,) + 2/3,Z] cos ft*

+ [(1 + v)n(ai + ft) — 2a,7£] sin ft<p}

— e~"'v{ [(1 + v)n(a2 + ft) + 2/32K] cos ft<?

— [(1 + v)n(a2 — ft) + 2a2K] sin ft*}} cos nx, (80)

10. Constant circumferential moment over segment of generator. When the external
circumferential moment is distributed according to the rule

Ml/28 when | x* \ < 8
(81)

0 when (L/2) > | x* \ > 8
it can be represented by the Fourier series

CO

X) cos (mirax/L)
m" 1 , 3, • • •

where the coefficient M*fm) is

M*(m) = (24f*/x«)(l/m) sin (mrh/L). (82)

The displacements w, u, and v can be calculated from (78), (79), and (80) if M is re-
placed by (1/2)M*(m) and the resulting expressions are summed over m. Naturally the
summation indicated in (69) must also be carried out if the first term alone does not give
sufficient accuracy. However, this is seldom the case.

If the coefficient bm is defined as

bm = - (M*/4tt2)(L/DK8)(\/m2) sin (rmr8/L), (83)
the moments and the membrane stresses in the shell can be given in the form

Mim)/i(—D/a)bmn cosna;] = e~a,r{[—(1 — v)n + 2vK] cos ftp + (1 — v)nsin ftp}

+ e~a"e{ [(1 — v)n + t.vK] cos ftp + (1 — v)n sin ftp}, (84)
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Mlrm)/[(—D/a)bmn cosnx] = e~ax,f\[(\ — v)n + 2 K] cos ftp — (1 — v)n sin ftp}

+ — (1 — v)n + 2A'] cos ftp — (1 — v)n sin ftp}, (85)

^™7[( —D/a)(l — v)bmn sin nx] = e~a,r {— (a, + ft) cos ftp + («i — ft) sin ftp}

+ e*""{(«, — ft) cos ftp + (a2 + ft) sin ftp}, (86)

o-im>/[(S/2/f2)6mn cos nx] = — e~°"v \n cos ftp + (n + 2/C) sin ftp}

+ e~"'v\n cos ftp — (n — 2/f) sin ftp}, (87)

(r^m)/[^/2if2)6„n2 cos «x] = e~"'v {cos ftp + sin ftp}

+ e_a"'{ — cos ftp + sin ftp}, (88)

r:;V[(£/2K2)6mnsin «.r] = e"a" {(«, - ft) cos ftp + (a, + ft) sin ftp}

_|_ e a'ip {— (a2 + ft) cos ftp + (a2 — ft) sin ftp}. (89)

When the moment is concentrated at x — 0, the distance 5 approaches zero. In
that case

M'vm) = (2 M*/L) (90)
and

bm = -(M*/^DK)(l/m). (91)

11. Convergence. When 5 is finite in the series representing the loads, all the dis-
placements, moments, and stresses converge. This is true even when 5 = 0, x ^ 0, and
the load is a concentrated radial force P*. In this case, when m is sufficiently large, the
quantities of practical interest behave at p = 0 in the following manner:

w ~ (1/m3) cos (mirax/L), wfX ~ (1/m2) sin (mirax/L),

Mx ~ (1/m) cos (mirax/L), Mv ~ (1/m) cos (rnirax/L), (92)

a*

t,„ — M-. = 0.

(1/m3) cos (rrnrax/L), <rv ~ (1/m3) cos (rnirax/L),

When p = 0 and x = 0, the series for Mx and Mv diverge, but the remaining series
converge.

When the load is a concentrated longitudinal moment at x = 0, p = 0, the behavior
at p = 0 for large values of m is:

w ~ (1/m2) sin (rnirax/L), wtX ~ (1/m) cos (mirax/L),

Mx ~ sin (mirax/L), Mv ~ sin (mirax/L), (93)

Gz ~ (1/m2) sin (mirax/L), o> ~ (1/m2) sin (mirax/L),

txv = Mxv = 0
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The displacements and the membrane stresses again converge, hut the moments
Mx and Mv are given by divergent series representing zero when x ^ 0 and an in-
definitely large quantity when x = 0. The series converge for all values of <p 0.

Finally, when the load is a concentrated circumferential moment at <p = 0, x = 0,
one obtains at tp = 0 for sufficiently large m:

w = w wX = <rx = av = 0,

Mx ~ cos (mirax/L), M v ~ cos (mirax/L), (94)

Mxv ~ sin (mirax/L), txv ~ (1 /m2) sin (mirax/L).

Here again the series for the moments diverge in consequence of the representation
of the load by a divergent series. The series for the stresses converge, and all the quanti-
ties are represented by convergent series when <p 0.
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