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ON FINITE TWISTING AND BENDING OF CIRCULAR RING SECTOR PLATES
AND SHALLOW HELICOIDAL SHELLS*

BT

ERIC REISSNER
Massachusetts Institute of Technology

1. Introduction. In the following we consider a thin circular ring sector plate under
the action of two equal and opposite forces perpendicular to the plane of the plate,
along the axis through the center of the ring (Fig. 1). The ring sector plate may be con-

Fig. l.

sidered as part of a winding of a close-coiled helical spring. The problem of the stress
distribution in the twisted ring sector with rectangular cross section has first been
considered by J. H. Michell1 as a problem of three dimensional elasticity. A solution of
this problem by means of the theory of thin plates will bear the same relation to Michell's
solution as Kelvin and Tait's solution for the torsion of a rectangular plate bears to St.
Yenant's solution for the torsion of a beam with rectangular cross section.

The reason for the present note is the further observation that by treating the problem
as a plate problem it becomes possible to analyse non-linear effects in a relatively simple
manner by making use of the equations for finite deflections of thin plates.

In addition to the problem of non-linear effects for an originally flat plate we also
consider the corresponding problem for a shallow helicoidal shell, thereby obtaining
information concerning the influence of initial pitch on stresses and deformations in the
spring.

*Received Aug. 11, 1952; revised manuscript received March 23, 1953. The present paper is a report
on work done under the sponsorship of the Office of Naval Research under Contract N5-ori-07834
with Massachusetts Institute of Technology.

'J. H. Michell, Proc. London Math. Soc., 31, 140-141 (1889).
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In the consideration of both these problems one is led to a study of the simultaneous
action of the pair of axial forces described above and of a pair of couples the axes of
which coincide with the direction of these forces (Fig. 1). We determine in particular of
what magnitude the couples have to be in order to prevent the association of circum-
ferential displacements of the points of the ring plate with the axial displacements
caused by the axial forces. We find that if these circumferential displacements are
prevented the effect of non-linearity and the influence of initial pitch are much more
pronounced than in the absence of the couples. We also encounter a problem of in-
stability of the ring sector plate which is associated with the presence of the couples.

A further result which we find is to the effect that non-linearity is relatively more
pronounced in regard to the magnitude of stresses than in regard to the axial force-
displacement relation. A similar result is known for the problem of finite torsion of thin
rectangular plates2.

It seems worth noting that the present developments may also be considered as a
contribution to a non-linear theory of dislocations.

Apart from the question of method the present treatment of the problems of the
ring sector differs from that by means of the theory of thin rods3 in the following respects.

Account is taken of a non-linear effect which is significant if the ratio of width of
cross section to thickness of cross section is sufficiently large. For the helicoidal shell
this effect is found to be present even in the range of applicability of the linearized
theory. In the theory of torsion of rectangular plates this effect manifests itself through
axial normal stresses proportional to the square of the angle of twist. These normal
stresses have no axial resultant or bending couple but give rise to a twisting couple which
is proportional to the cube of the angle of twist2. A corresponding result is here obtained
for the problem of the ring sector.

While the results of the theory of thin rods are based on the assumption that the
ratio of width of cross section to radius of center line of cross section is sufficiently
am all the present results hold for all possible values of this ratio.

2. Differential equations and boundary conditions of the problem. The differential
equations for finite bending of thin plates of uniform thickness are in polar coordinate
form4

/ „\ i 1 # / ,r dw\ , 1 3 1 dw\

+ <2>

where w is the transverse deflection, F Airy's stress function, and D = Eh3/12(1 — v2).

sS. Timoshenko, Strength of materials, Part 2, Van Nostrand, p. 301; A. E. Green, Proc. Roy. Soc.
London (A) 154, 430-455 (1936); 161, 197-220 (1937).

3See A. E. H. Love, Treatise on the mathematical theory of elasticity, 4th Ed., Cambridge 1934, pp.
414-417 for reference to work by Kirchhoff, Kelvin and Tait, St. Venant, and Perry.

4K. Federhofer, Z. Angew. Math. Mech. 25/27, 20 (1947).
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Stress resultants and couples are given as follows

A7- d*F \t ldF , 1 d2F ,- d (1 dF\
Ns~~d?> Nr=r^ + ?W' N" = ~d~rVTo)' (3)

,, (d2W v dw , v d2w\ -- t\ (1 du) . 1 d2W d2w\
M-= -D\-^ + -r*+?wh M-~ -DbsF + ?W + "-g?h

,, ,, . _ d /l dw\
(4)

v n 9V2w dV2w .Fr--Z> —, v,--D — , (5)

P - V -L 1 dM'e -LAT dW J- AT ldW
R' ~ V' + r~W + N' dr r dd

D . dMrl . ,, 1 dw . Ar dwK,- T'. + ^ + W.-^ + JV,,-

(6)

In addition to this there occur concentrated corner forces of magnitude 2MrS at corners
formed by lines r = const, and 6 = const.

Let r = a and r = b be the inner and outer circular edges of the plate and let 0 = 0
and 6 = a be the radial edges of the plate (Fig. 1). We prescribe the following boundary
conditions, assuming for the present that the couples T indicated in Fig. 1 are absent,

r = a, b; Nr = Nrl = Rr = Mr = 0 (7)

/£> «i) nb /*b
Ne dr = / Nr0 dr= rNe dr = / Me dr = 0

j *J a * a J a

= 0, a] f" R, dr + 2(Mre)a - 2(Mr,)h = P (8)
J a

[ rRe dr + 2(rMr))a — 2(rM,e)b = 0
J a

The boundary conditions at the edges 6 = const, are taken in such form that a semi-
inverse procedure of solution becomes possible.

3. Solution of the boundary value problem. The fact that the solution to be obtained
should give stress resultants and couples which are independent of the polar angle d
and a transverse displacement w which is proportional to 9 and knowledge of the corre-
sponding solution in three-dimensional linear elasticity suggests the following form of
w and F,

w = kd, F = F{r), (9)

Substitution of (9) in the differential equations (1) and (2), with p(r, 6) = 0, shows that
(1) is identically satisfied and (2) becomes

V2V2F = Eh-rI • (10)



476 ERIC REISSNER [Vol. XI, No. 4

From (10),

F = |£7tfc2[(ln r)2 + A In r + Br2 + Cr2 In r], (11)

where A, B, C are constants of integration and an unessential additive constant has
been omitted.

Stress resultants and stress couples are now

N, = | Ehk2[2 ~ ~ + IB + C(1 + 2 In r)]f

W. = | Ehk'^2 1 ~2Inr - ^ + 2B + C(3 + 2 In r) J,

ATr9 = 0, Vr = 0, = 0, (12)

M, = 0, Me = 0, Afr, = (1 - v)D K ,r

Rr = 0, Re = -2(1 - v)z> ̂  + AT, - •r r

Determination of the constants of integration A, B, C and k is effected by means of the
boundary conditions (7) and (8), some of which are seen to be satisfied identically. The
relevant remaining conditions are the first of equations (7) and the third and fifth of
Eqs. (8). We have from (7)

4 + 25 + C(1 + 2 In a) = -2 ,a a (13)

~ + 2B + C( 1 + 2 In 6) = -2 ^ •

The third of Eqs. (8) may be transformed as follows if account is taken of the fact that
F'(b) = F'(a) = 0,

f" rNe dr = j' rF" dr = {rF')"a - j" F' dr = F(b) - F(a) = 0.

We have then

.4 In (b/a) + B(b2 - a2) + C(b2 In b - a2 In a) = -(In b)2 + (In a)2

= — In (b/a) In ab. (14)

Equation (13) and (14) serve to determine A, B and C. The remaining fifth of Eqs. (8)
is to be used for the determination of the relation between force P and deflection k.
We may write

J' Ner" dr = (" F"r~l dr = (F'r'X + / F'r~2 dr = J NTr~' dr.
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Therewith, we have from this fifth of Eqs. (8),

-1- 9 In b
2 I

1 M , 1 m.i 1 + 2jna 1 + 2 In b , A (1 1_\
2 \a2 67(1 ~ v)DkW ~ b2) + 8 Ehk la2 2b

= P. (15)+ 2B In - + cfln - + (In b)2 - (In a)2]a \ a /_

After some transformations in which we make use of the following formulas

+<¥-¥)■

2B(V - a') - -CI'/ - a' + 2(111 In b - a' In a)] - 2 In |, (16)

(in »)' - ■ in » {l - £±4 In 4U> — a \ a/ 2 J a ( b — a aJ

a = R - c, b = R + c, E - 2(1 + v)G. (17)

Eq. (15) appears in the form

^4X1)']Ml)']'k

where

1 +

/ i(x)

h - * , i + ivri + x', i +x ,T- Irs- to —x) _-&r k -1J
(1 - x2 1 + xX

~ \ 2x lnr^*
(19)

For sufficiently small values of x, practically up to x ~ 1/4, we have

Ux)~^x\ * ~ | (20a)

For larger values of x we have the limiting relation

lim /,(x) = 1 (20b)
x—*l

Equations (18) and (20) indicate the way in which the nonlinear effect depends on
deformation and dimensions of the plate. For wide plates for which 1 — x <& 1 we have
the usual result that for linearity the ratio of deflection per unit of circumferential
angle to plate thickness must be small compared to unity. As the plate gets narrower
larger and larger deflections lie within the linear range, the condition for linearity being
that (k/h)(c/R)2 be somewhat smaller than unity.

A further question of interest concerns the magnitude of the stresses in the plate.
As we have neglected the effect of transverse shear deformation we cannot determine the
magnitude of the transverse shearing stresses. But we can determine, within the accuracy
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of the results of plate theory the magnitude of the horizontal shearing stress rr8 =
6MrS/h2. We have from (12)

fi lc
rr. = (1 (21a)

and from this

Tre(a) = Tre,mas = <2(\^Jr~v) ' ^21b^

In the non-linear range we have in addition a stress <re = Ne/h. We limit ourselves
here to a consideration of this stress along the edges r = a and r = b of the plate. We have
from (12), taking account of the fact that Nr(a) = Nr(b) = 0,

„,(«)=i a-j? - ^ +42 - **=?b i]}-

„<») - 1 - 4 ̂  + C[2 - ^ ta |]},

(22)

where C is given by (16).
Equations (22) may be written in the alternate form

. 1 Ek2 Uc/R) 1 Ek> fz(c/R)
Cs[ ) ~ 4 R2 (1 - c/fi)2 ' cr"( ) ~ 4 .ft2 (1 + c/ft)2 ' ( j

where

/.<*> - 1 - h ^ + C«1 - *){l - In i±|],

m - 1 - In + Cfi'd + x)(l - In fif],

h M " (^ 11

(24)

~ » i- * + »
1 — x

Of the two stresses <re(a) and cre(b) the larger one is the stress <re(a) at the inner edge of
the plate. For the sake of comparison we may write

«>

For sufficiently small values of c/R, practically for c/R < 1/4, we have

4 (c_ V c_ < 1
3 \R/ ' R~ 4

For larger values of c/R we have the limiting relation

r» . (26a)

lim /2(|) = 1 (26b)
c/R—1
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Comparison of the stress ratio (25) with the load deflection relation (18) indicates
that non-linearity affects the stresses much more strongly than the deflection characteris-
tics of the plate. As long as c/R < 1/4 we have for example that when <r9(a) /rr8(a) = 1/4
then non-linearity is responsible for a three-percent correction only to the stress dis-
placement relation and when ae(a)/rre(a) = 1/2 then this correction amounts to only
about twelve percent.

4. Interaction between pure twisting and pure bending. A further problem within
the present context is the problem of the effect of a moment T about the line of action
of the force P on the relation between force P and deflection k. Differential equations
and boundary conditions are as before with one exception, which consists in replacing
the boundary condition $barNs dr = 0 by the condition

rNe dr = T. (27)/*1 a

The solution for the stress function F now consists of two parts, one due to non-linearity
in k and with T = 0, and the other without the non-linearity in k but with T ^ 0. Since
the first part of the solution is given in the previous section we may now restrict atten-
tion to the second part of the solution. We write for this second part

F = T{A* In r -f- B*r2 + C*r2 In r}. (28)

The boundary conditions Nr(a) = Nr(b) = 0 are satisfied by setting

A*a~2 + IB* + C*( 1 + 2 In a) = 0,

A*b'2 + 2B* + C*(l + 2 In b) = 0.
The condition rNe dr = T becomes

A* In (6/o) + B*(b2 - a2) + C*(b2 In b - a2 In a) = —T. (30)

From (29) and (30) follows

-1* -2e*b \ ■ 'il+*°i?: i 'n1c",
c.= 2 r_/ 206 A-"]-

o — a L \b — a a/ J

A relation between P and k follows again from Re dr — 2[Mrt]l = P, in the form

(1 - v)Dk h2 7uf + rtf 4r h\j^ + 2B* In - + C*{ 1 + In ah) In -] = P. (32)
CLO |_ ^ 0 GL d flj

Introduction of A*, B* and C* from (28) gives after some transformations

(31)

k
where

[-»+^4)]=SM!)7. (33)
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Equation (33) shows that a positive moment T, that is a moment which tends to close
an open ring sector, reduces the stiffness of the ring plate in so far as the effect of the
axial force P is concerned. In contrast to this a negative moment T increases the trans-
verse stiffness of the ring plate. For sufficiently large positive T we have instability
in the sense that we may have k ^ 0 when P = 0. It may, however, be that instability
occurs in other modes of deformation for values of T which are lower than that given
by (33).

When c/R is sufficiently small, we have the approximation

/«(*) ~ 3 - , x < \ ■ (34a)X 4

In the range of applicability of (34a) we may further write

T = | <7T ch, (35)

where <jt ~ — ere (a) ~ <?«(&). With this we have

_T
Eh5 ̂ {r) ~ 2 E h2 ' R ~ 4 ' (36)

The present section may be concluded by listing the form of the relation between
k and P which holds when both the effect of T and non-linearity is considered. We have
then

(37)

We make the following further observation. Finite transverse deflections of the ring
plate will be associated, in the absence of a moment T, with circumferential displace-
ments parallel to the undeflected middle surface of the plate. Such displacements are
also caused by the moment T. This means that if the conditions of load application are
such that circumferential displacements are prevented T will have a definite value,
proportional to k2 and the non-linear correction term in the transverse load-deflection
relation for this form of load application will differ from the result (18) which holds
when T — 0.

The problem of the determination of this modified correction term will be considered
in the last section of this work, in conjunction with the problem of the ring plate with
initial deflection.

5. Pure twisting and bending of an initially deflected plate. We now consider an
initially deflected plate, or helicoidal shell, with middle-surface equation

W = KB. (38)

We assume that K is sufficiently small for the shell to be considered shallow. It seems
that for practical purposes we may admit values of K up to about (R — c)/ir.

The differential equations for shallow shells which take the place of the flat-plate
equations (1) and (2) have been given by Marguerre.5 The necessary changes consist

6K. Marguerre, Proc. Vth Int. Congress Appl. Mech. Cambridge 1938, p. 98.
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in replacing the operation 5D(w) on the right of (2) by 33(11" + w) — 2D (IF) and in re-
placing w on the right of (1) by W + w.

We may take as before

w = kd, F — F(r) (9)

which reduces the two differential equations for w and F to the one equation

V2V2F = Eh 2Kkrf k* ■ (39)

Equations (3), (4) and (5) which define stress resultants and couples remain un-
changed while in equations (6) w must be replaced by W + w.

The form of the boundary conditions (7), (8) and (27) remains unchanged and this
means that we have now

F = \Eh(2Kk + k2) [(In r)2 + A In r + Br2 + Cr2 In r]

+ T[A* In r + B*r2 + CV In r], (40)

where A, B and C and A*, B* and C* are given by (16) and (31), respectively.
In determining the relation between force P and deflection k according to the fifth

of Eqs. (8) it must be observed that Re of (12) is now changed to

Re = -2(1 -v)D% + Ne • (41)

A comparison of (40) and (41) with the corresponding earlier results shows that Eq.
(37) for P as a function of k and T is changed into

T
Eh3

^ /.(i)(k+2T+K) - o+-»4)

- +'»4) i>] - S [■ - (l)'
As long as k « K equation (42) reduces to the linear relation

^ 4) ¥] - o+->4) g ■- Wf [> ■- (I)"

(42)

(43)

In view of the nature of the distribution of stresses o> which give rise to the terms account-
ing for the initial deflection of the plate the term with K2 can be obtained only by taking
account of plate action and is consequently not incorporated in the classical theory of
curved beams.

We note further that while for the initially undeflected plate the non-linear correc-
tion term varies as the cube of the deflection we have, for the initially deflected plate,
correction terms varying both as the square and as the cube of the additional deflection
caused by the forces P.

6. Consideration of circumferential displacement. We now consider in addition to
the transverse displacement w radial and circumferential displacement components
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u and v. Components of finite strain for the middle surface of the shallow shell are of the
form

du . 1
+ 2

'^d(W + w)J _ ^dWj

U , 1 dv ,
t0=r+rFe +

1 r(d(w + w)\2 _ (dwY~
2 L\ t dd / \r dd) _ (44)

1 du , d fv\ , Td(TF + w) d(W + w) dW dW~\
= -~ + r-_y + L jr ^rj-g ~^VTe\-r dd dr \r

For the present problems we have W = Kd, w = kd, du/dd — 0 and yrS = 0. From
this it follows that

v = ger, (45)

where w is the relative angular displacement of the ends of one winding of the plate.
The expressions for er and ee reduce to

du u , to . Kk + %k2
<<=Tr> £> = r + 2^ + 7 ' (46>

leading to a compatibility relation of the form

dree oi Kk + ffi ,Anx
 er =   -2  • [it)dr 2ir r

We introduce the relations

Ehte = N, - vNr , Eher = Nr - >>N, (48)

and express Ne and Nr in terms of the stress function F by means of (3), taking account
of the fact that here dF/dd = 0. This leads to the result that

1 T d3F . d2F 1 dF~\ a Kk + hk2
Wh Vl? + ~P ~ r d^\ =  7" (49)

Into (49) we introduce F from Eq. (40), and this gives us after some cancellations the
relation

i(2B + W+|P-^ (50)

where C and C* are defined by (16) and (31).
If we wish the axial force-displacement relation under the assumption of vanishing

circumferential displacement we find from (50), with « = 0, as appropriate value of the
couple T,

T (2Kk + k2)C 2Kk + k2[b2 + a\_b ,1 b
Eh   8C5   8 J « (51>
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Introduction of this value of T into Eq. (42) gives after some transformations the follow-
ing relation between k and P,

k

where

and

1 + (52)3(1 + v) , (c_\ (K + k)(2K + fc)l _ 3Pff_ f _ (c_Y
4 U\rJ h2 J 2Gctf L \RJ .

<53>

fs(x) ~ | x2, x £ |, lim /5(z) = 1. (54)

It may be seen that in the range c/R < 1/4 the effect of non-linearity and of initial
deflection is much more pronounced when u = 0 than it is when T = 0, a factor (4/15) •
(c/R)* which occurs when T = 0 being replaced by a factor (c/R)2 when w = 0. On the
other hand, when c/R is sufficiently near to unity the effect of non-linearity and of pre-
twist is the same for T = 0 and for co = 0.

Table I. Values of functions occurring in load displacement relations and stress ratio <re/Trs .

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
0.000036
0.000574
0.00328
0.01024
0.0265
0.0600
0.1248
0.2484
0.4923
1.0

0
0.0159
0.0465
0.0836
0.1691
0.255
0.359
0.483
0.631
0.809
1.0

29.08
14.32
8.97
6.14
4.31
2.98
1.94
1.106
0.427

0

0
0.0135
0.0530
0.1186
0.208
0.321
0.453
0.600
0.756
0.903
1.0


