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ON THE STABILITY OF SOME FLOWS OF AN IDEAL FLUID WITH
FREE SURFACES*

BT

J. L. FOX AND G. W. MORGAN
Brown University

1. Introduction. Steady state plane flows of an incompressible inviscid fluid with
free surfaces were originally studied by Helmholtz [2] and Kirchoff [3], and have since
been thoroughly reported in the literature. Their work was an attempt to improve the
classical solutions of flow around sharp corners which are physically unacceptable because
they involve infinite velocities at the corners. Helmholtz and Kirchoff reasoned that as
the velocity becomes large, the pressure in the fluid decreases to the value at which the
fluid goes over into the vapor state. This gives rise to a so-called cavitated region bounded
by a "free surface" over which the pressure is assumed to be maintained constant and
uniform.

One also deals with steady free surface flows in the case of jets flowing in an ambient
constant pressure atmosphere. Several examples of such problems are treated by Milne-
Thompson [4],

Very little work has been done in the past concerning time dependent flows with
free surfaces. Lord Kelvin [5] discussed the vibrations of a hollow columnar vortex flow.
Some unsteady free surface flows under the influence of external forces, such as gravity
waves in water, are discussed in Lamb [6] and the investigation there is extended to
include the effects of surface tension and viscosity.

Recently Ablow and Hayes [1] developed a theory of the small perturbations of the
two-dimensional flow of a perfect fluid in the presence of a free surface without external
forces. They then used their theory to study two specific problems, namely the flow
around a hollow vortex and the flow through a Borda mouthpiece.

The present investigation will concern itself with an extension of the work of Ablow
and Hayes to some free surface flows of jets as well as to a number of generalizations of
problems treated in [1]. Our primary concern will be to obtain information concerning
the stability of these flows.

2. Resume of basic theory. The basic theory underlying the methods used in this
report has been discussed in detail in the work of Ablow and Hayes [1]. For the sake of
convenience however, a brief outline of the important results will be given below.

A. Assumptions. We shall be dealing with perturbations of steady state flows
which do not fill the entire plane. They can be conveniently divided into three categories:
(1) flows which are cavitated due to the fact that there is a minimum pressure the fluid
can sustain; (2) jet type flows; (3) flows which are a combination of (1) and (2). In all
cases there exist in the steady flow free surfaces along which the pressure remains constant
and uniform.

The fluid is assumed homogeneous, incompressible and inviscid. Both the steady and
perturbed states are assumed to be irrotational and two-dimensional.
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Brown University.
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All quantities are written in non-dimensional form through the use of a characteristic
length, pressure and velocity in such a manner as to make the steady state velocity along
the free surface of unit magnitude.

Under the assumptions made the flows must satisfy Bernoulli's equation in the form

f> + Pi' + P<P = C(t), (2.1)

where p is the pressure, p the density, q the velocity, <p the velocity potential and C(t)
is a function of time alone. The dot indicates partial differentiation with respect to time.

Furthermore, we can introduce a complex potential / and a complex velocity w
such that

- - If, (2-2)
where w = u — iv and u and v are the Cartesian velocity components in the z = x + iy
plane.

B. Basic flow. The basic steady flow satisfies the steady form of (2.1)

Vo + 5P?o = const., (2.3)

where the use of a zero subscript denotes the basic steady flow. Since

dfo . i |w0 — j— and q0 = | v>0 |,
ClZo

we can write (2.3) as
Po + \pw0w*0 = const.,

where the star indicates the operation of taking the complex conjugate*.
C. Perturbation relations. We shall now give the steady state basic flow a small

perturbation in terms of a small real parameter e in the form

2 = Z0 + eZ^Zo , t),

f(z, t) = fo(Zo) + efi(z0 , t),

w(z, t) = Wq(Zq) -I- fU>,(z0 , Oi

p(z, t) = Po(z0) + epi(z0 , t),

where / and w are analytic functions of z0 . All subsequent relations will be linearized
by neglecting terms of order i and higher. Hence all perturbations are small perturba-
tions in that they are correct only to first order in t. It is convenient to perturb the
independent variable z0, although the perturbations in /, w and p are given in terms of
the fixed point z0 .

The perturbations given above are not independent since we can derive the following
relations from (2.1) and (2.2)

wfjz{ + w, = w0fi , (2.4)

Pi + Re[w,u>? + /j — Wqz'i] = 0, (2.5)

*The star is used instead of the usual bar, for typographical reasons.
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where the prime indicates partial differentiation with respect to f0 , and Re denotes the
real part. Thus we see that only two of the four perturbations are independent.

We note that, when properly chosen, two different sets of perturbations, e.g., (z3, h)
and (z4 , ft) may represent the same physical perturbation. Their difference, namely
zi=zs — zi,fl=f3 — ft, will leave the flow unchanged and the perturbation (2, , /,)
will be called an invariant perturbation.

We define a stationary perturbation (z2 , f2) to be one in which any given physical
perturbation is evaluated at a fixed point z0 of the basic flow, i.e., one for which the
space variable is not perturbed (z2 = 0). We can now find, corresponding to a given
perturbation (21 , /,), a unique stationary form by superposing on (z, , ,/Y) the invariant
perturbation 2, = —2, .

Using (2.4) and (2.5) we can derive the following relations between the stationary
perturbations f2 , w2 and p2 :

w2 = u'0/2 , (2.6)

P2 = -pRe [wvwo/2 + /j]- (2.7)
In this formulation there is only one independent perturbation quantity, say f2 ,

restricted only by the condition that it be admissible under the boundary conditions of
the problem.

In subsequent work, for the sake of compactness, we shall not change the name of a
function after a change of independent variable, e.g., we shall write

/(z0) = f[w0(z0)] = f(w0).

D. Free surface condition. There are two conditions that must hold on the free
surface. First, the free surface pressure remains constant, and second, a particle originally
on the free surface remains on the free surface in the perturbed state. From (2.5) we see
that we can satisfy the first condition by demanding that

Re [/2' + J2 + wfci] = 0 (2.8)
where we have used the relation between /1 and its stationary form /2

Si = /1 ~ WqZi .
The second condition can be shown to imply that

Im [f2 + (WoZi)' + (w„Zi)'] = 0 (2.9)
where Im denotes the imaginary part.

We can satisfy (2.8) identically if we set the expression in the bracket equal to
ix(z0, t), where the function x is real on the free surface and otherwise arbitrary. Solving
for zt to obtain the perturbation in the space co-ordinate which takes the basic flow
free surface into the perturbed free surface, we have

2. = i iix ~ D[f2]} (2.10)
Wq

where the operator Z)[ ] = d[ ]/df0 + d[ ]/dt. Now substituting for zx from (2.10)
in (2.9) we find, after some reduction, that the free surface boundary condition is

Im \D[J2 - a,D[f2]\ - /"} = 0 (2.11)
where o> = w0/w'0 .
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Adopting the notation

H = L[f2] ^ D[f2 - coZ)[/2]] - /; (2.12)
(2.11) becomes with w0 as the independent variable

H(w0) = (H{w0))* on w0w*0 = 1. (2.13)

E. Symmetry considerations. In cases where the basic flow has a velocity distri-
bution which is a symmetric function of z0 (symmetric basic flow) certain simplifications
can be made in the problem. In functional notation a symmetric function F(v) satisfies

F\v) = (F\v*))*
while an antisymmetric function satisfies

F"(v) = ~(F\v*))*.

We can combine both relations in a convenient notation

F"(v]) = ±(F>*))*
where the first superscript corresponds to the upper sign, and the second superscript to
the lower sign.

Certain operations performed on a symmetric or antisymmetric function preserve
these properties. It can be shown, for example, that the operations of differentiation and
integration are symmetry preserving, i.e., the symmetry or antisymmetry of the function
remains unchanged. Also, if

F"(v) = ±(Fa>*))*

and we transform to a new variable u such that

u(v) = (u(v*))*

then
F'a(u) = ±(F"(«*))*

i.e., the function retains its symmetry or antisymmetry properties in the u plane.
The important consequence of these considerations is embodied in a theorem which

will be stated here without proof (for proof see [1, pp. 26 et seq.]).
Symmetry Theorem: If the basic flow is symmetric, any perturbation can be repre-

sented as the sum of a symmetric and an antisymmetric perturbation each of which
satisfies all boundary conditions and so is an admissible perturbation in its own right.

F. Separation of time dependence. At this point in the development of the theory,
the only restriction placed on the perturbation in the potential is that it shall satisfy all
applicable boundary conditions. We shall attack the problem by assuming solutions of
the form

f2 = G1(u'0)ex' + G2(u'„)ex". (2.14)

We anticipate that this choice of time dependence will lead to an eigenvalue problem for
the determination of the functions G'i and G2. We expect to find that the boundary con-
ditions can be satisfied only for certain specific values of X and that a general solution
will be a sum of all such elementary forms of /2. Our primary concern will be to determine
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the magnitude of the real part of all admissible X since this will indicate the stability of
the flow. We shall have

unstable perturbations for RejXj > 0,
neutrally stable perturbations for Re{X} = 0,
stable perturbations for Re{X} < 0.

It might seem sufficient to assume /2 in the form

/, = G(w0)eu (2.14a)

since if X and X* were both eigenvalues, both would be found among the admissible
values of X. The form (2.14) has been chosen because it is found that the elementary
form (2.14a) is not capable of satisfying all the boundary conditions, whereas the form
(2.14) can represent an admissible perturbation.

Substitution of the form for /2 from (2.14) in our previous expression (2.12) for the
operator H gives

H(w0.) = LilGy + Lt[G2]ex", (2.15).

where

L\[G] = — j~2 + 2\w>o ̂  " + \G(u' + Xco). (2.16)
to aw0 awo

Our free surface boundary condition (2.13) becomes

Lx[(?iK)] = (Lx.[<?2(wo)D*. (2.17)

In the event that the basic flow is symmetric we can decompose f2 into symmetric
and antisymmetric components and write

/2 = n + n, (2.i8)

/sa S~y8a X t ■ /~i$a X* t2 ~~ G\ e + (r2 e ,

G?(w0) = ±(G[\w*0))*. (2.19)

With (2.19) we can eliminate G2 from our free surface boundary condition (2.17) which
then becomes

where

and we can show that

£x [(?!>„)] = ±L; (G"(s). (2.20)

This condition is to be applied on the free surface w0w* = 1 or w*> = 1 /w0. We can use
analytic continuation, however, and demand that it hold over the entire ic0 plane.

The remainder of this paper will be devoted to solving the perturbation equation
(either (2.17) or (2.20) for several types of problems. The analysis gives rise to relations
which are exceptionally long and cumbersome. Due to limitations of space, only the
essential features of the solutions will be presented here. For further details the reader
may refer to the report mentioned in the footnote to the title. The subscript 0 in w0 ,
which denotes the basic flow, will be dropped in the work that follows.
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3. Jet impinging on a finite plate. One of the flows which the authors intended to
study was that which results when a plate of finite width is placed at right angles to an
infinite stream which is uniform at infinity and which has an infinite cavity bounded by
constant pressure surfaces downstream of the plate, (the Helmholtz plate problem).
Since the velocity is assumed to be the same no matter how one approaches infinity, the
points corresponding to upstream and downstream infinity in the physical plane map
into one and the same point in the hodograph (wa) plane. In the analysis of the perturbed
flow one is then confronted with the problem of applying boundary conditions pertaining
to different regions in the physical plane at a single point in the hodograph plane. Math-
ematically the result of this is that the perturbation quantities exhibit a very irregular
behavior at this point; it is found, in fact, that one is led to a differential equation which
has an irregular singular point there.

To overcome this difficulty an attempt was made to differentiate between upstream
and downstream infinity by artificially separating slightly the source and sink repre-
senting these points in the hodograph plane. After applying the boundary conditions
the points would be made to coalesce and it was hoped that the results so obtained would
be the same as if the original problem had been solved directly.

In the course of this study it was realized that the separation of upstream and down-
stream infinity could be accomplished in a more direct and rigorous manner by con-
sidering the Helmholtz plate as the limiting case of a related and much more general
physical problem, namely that of a jet of finite width which impinges on a finite plate
and is thereby divided into two jets which diverge from the edges of the plate and tend
to become straight jets inclined at ±0 to the horizontal as they approach downstream

z«- plane

Fig. 1.

infinity (see Fig. 1). The limiting case of infinite jet width then constitutes the proper
mathematical formulation of the Helmholtz plate problem.

A. Basic flow equations. We begin by writing the potential of the basic flow in the
hodograph plane (see Fig. 2). This flow may be thought of as arising from the presence
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of unit sources at w — ±1 and sinks of strength one-half on the unit circle at w = ±a
and ±o* where argument of a = 6, the jet inclination at downstream infinity. The
potential is then found to be

fo(w) = log (w2 -Wa2)(wl)- a*y (3J)

Since we are only interested in that part of the hodograph plane which corresponds
to the physical flow, it is convenient to introduce a transformation f = w2 such that the
right half of the unit circle in the w plane goes into the entire unit circle in the f plane.
This transformation has the advantage of reducing the number of singular points on the
unit circle.

The potential in the f plane becomes

/o(r) = log (f -b)({ - b*)' ^3'2->
where

b = a2.

The asymptotic inclination of the downstream jets, as characterized by a parameter
13 = sin 6, can be related to the dimensionless ratio (d/D) of plate width to original jet
width. This can be accomplished by considering the integral

r*-£(s)-
In terms of hodograph variables we have

dz = - dw.w \ aw)
Thus

r° *-r hi*) *•-ww-
Now using (3.1) for f0(w) which involves the unknown sink position a, we finally arrive at

(d/D) = 7r/2(l - vr=75) + (3/2 log (3.3)
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The limit cases /3 = 1 and /3 = 0 correspond to the impinging of a jet of finite width
on an infinite plate, and the impinging of an infinite stream upon a finite plate, re-
spectively. These, in turn, correspond to making the sink position a approach i or +1,
respectively. The steady state form of the potential, (3.1), in these limiting cases, goes
over into the known form of the potential with (d/D) = Oor ® respectively.

B. Derivation of the perturbation equation. As discussed in the basic theory we try a
solution of the form

f2 = Gxeu + G./" (3.4)

Our first objective is to narrow the possible choice of functions Gi and G2 by investigating
the functional properties which /2 must possess in order to satisfy some of the conditions
of the problem.

(1) Wall streamline condition. The boundary condition on the imaginary axis (map
of the plate) in the w plane is that the perturbed flow have no component normal to the
axis. It is convenient to transform this condition to the real axis. To do this we rotate
the hodograph plane by putting 77 = iw. The boundary condition will now be satisfied
if w2/w is real on 7? real. Denoting differentiation with respect to v by the subscript 77
and evaluating w2/w we have that

 v(v + l)(q2 + b)(y2 + b*) 
2j/2{2(t72 + b)(v2 + b*) - („2 + 1)[(„2 + b) + iv + b*)]

must be real on 77 real. Since the coefficient of /2, in the expression above is itself real for
real 77, we infer that /2, must be real on 77 real and hence a symmetric function of 77 in
| 77 | < 1.

(2) Analyticity and symmetry considerations. Since the basic flow is everywhere
regular in | 7? | < 1, /2, must also be regular in | 77 | < 1. Upon integrating /2, we then
find /2(t?) is both regular and symmetric in | 77 | < 1, i.e.,

Mv) = (Mr,*))*. (3.5)
Since the basic flow is symmetric we may decompose the perturbations into symmetric

and antisymmetric components, i.e.,

= n + ft where J7(f) = ±07(f*))*.
These relations hold in the f and w planes since the transformation from w to f preserves
symmetry.

In the 77 plane (77 = if') the above becomes

mn) = ±(/r(->?*))*,
where the superscripts still refer to the symmetric and antisymmetric components of
/2 referred to the f (or w) plane. Using the relation (3.5) we have

n\v) = ±m-v).
Thus, a f-plane symmetric or antisymmetric perturbation is represented by an even
or odd function of 77, respectively, and we may write

co 00

ra \ _ 2k ra \ A t 2k+1j ~~~ 2—i hV 1 J = 2L, °i<ri
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Since f = — i;2 these relations transform in the f plane to

n = f'u), n =
where F' and F" are regular functions of f in | f | < 1. We can also write

/r = G"eu + G'2°ex"

where we know that, by virtue of the symmetric basic flow,

G'2\w) =

Since f = w2 is a symmetric function of w, the above symmetry relation also holds in
the f plane (see 2E), i.e.,

gt (r) = ±((?r(r*))*.
The four functions G\a and G'2° can be replaced by two functions g'° by the following
relations which are found to be consistent with the above considerations.

G[ = g'(t), GI = Gr (?*))*
(3.6)

G\ = ga(£), Gl =

where g' and t~iga are regular functions of f in | f | < 1.

(3) The free surface boundary condition. For a symmetric basic flow the free surface
condition in the f plane is

£x[(?nr)]=*-[«■(£ (3.7)

where the form of the differential operator Lx in the f plane is found from (2.16) and
(3.1). It is not reproduced here because of space limitations.

If we substitute the forms (3.6) for G[° in (3.7), we arrive at the following relations

(3.8)

ha(t) = (3.9)

where
A"(f) = W(f)] (3.10)

The form of the differential operator Lx and our knowledge of the functional behavior
of g' and g° in | f | < 1 together with (3.10) show that, in | f | < 1, h'(£) is a regular
function of f and that h"(X) behaves like multiplied by a function with a simple pole
at f = 0. For convenience we shall represent h' and h" in the following manner

»'(» - 5 4(f - 'm- !,')]'•
(3.11)
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with ak and bk unknown constants. These forms for h" and h" possess the required behavior
in | f | < 1, and in addition satisfy the functional relations (3.7) termwise.

Our aim is to find functions g"(f) satisfying the relation (3.10) with h"(f) having
the forms given in (3.11). To do this we regard (3.10) as an inhomogeneous differential
equation for We note that the inhomogeneous term h'"(Z) is known in form only
and hence the solutions g'°Q;) will retain some arbitrariness which, for a given problem,
ought to be determined by the initial conditions.

C. Solutions of the perturbation equation. Equation (3.10) is a second order linear
differential equation of the Fuchsian type [7] with regular singular points at f = 0, 1,5,
b* and ». We can first find the complementary solution about the origin, which we can
denote as AKll) + BK(2), by the standard methods of solution in series. Knowing the
complementary solutions, the particular integral is readily found by the method of
variation of parameters, viz.

p T = R"» f' rtW' d? - Kfo 19x
•'r. 1F(K(,), Kl2)) 'i. W(Kw, K(2))'

where

p(r) = [f(r - i) ~ 2r(r - b) ~ 2f(r - b*)~]h'a^'
and W(Kn), Kl2)) is the Wronskian of the two solutions which can be found from the
differential equation and is Af~*(f — l)~4X(f — &)2X(f ~ &*)2X where A is a known constant.
The point f0 is an arbitrary ordinary point of the differential equation which we shall
choose as f0 = — 1. This solution will be valid up to the nearest singular point, i.e., within
the unit circle. Since boundary conditions will have to be applied not only within, but
also on the unit circle, in particular at the singular points, we must find solutions valid
at these points. To do this we study the indicial equation and hence the form of the com-
plementary solution appropriate to the point in question and then match this form of the
solution with the solution around the origin by the process of analytic continuation. A
new form of the particular integral may then be found. This method must be continued
until we obtain solutions near all points at which boundary conditions must be applied.

To conserve space, we shall write the form of the solution around the origin only.
It is

£7«(r) = A"RKW + B"RKW + i e-;k-s\, , (3.13)
r-0

where A'r, B'r and E'° are unknown constants. The term E'R KR+r is a particular
integral when A*(f) in (3.12) is replaced by, (see (3.11)),

h. _ h r -1)2 ~r+rnR+r - .

Similarly E°KaB+r is a particular integral when /t°(f) in (3.12) is replaced by

h° - r (f -1)2 ~Tr
n*+T ~ t1/2 B+rL(f - b)(f - b*) J •

5 an in
E" is the first non-zero E".

rI/2 B+rL(r - m - b*)_

The index R, which is an integer used to designate the solutions, is chosen such that
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D. Application of the boundary conditions. At this stage the symmetric and anti-
symmetric perturbations found as solutions of the perturbation equation satisfy the
wall streamline and free surface boundary conditions. We shall now investigate the
restrictions to be placed on these solutions in order that they may satisfy all remaining
boundary conditions. We shall first discuss the antisymmetric solutions.

(1) Anti-symmetric solutions, (a) The edges of the plate (f = — 1).
We demand that the inner surfaces of the jets diverging from the edges of the plate

continue to originate there in the perturbed state. Since z, is the perturbation in the
space coordinate which takes the basic flow free surface into the perturbed free surface
(see Eq. (2.10) in 2D), this condition will be satisfied if

= A \ix — /; — /£}= 0 at f = — 1.

Using (3.4) and (3.6) we find this implies (— 1) = 0. The solution gl valid near f = — 1
will satisfy this if an equation of the form

C\Al + C2B° = 0 (3.14)
is satisfied with Cx and C2 non-zero constants.

(b) At the point f = 0. We have all ready specified the behavior of (fit) in | f | < 1.
We can insure that the solution g'!( possess this behavior if ^ !>ga is a regular function of
f as f —» 0.

This boundary condition can be satisfied by equating to zero the terms in the solu-
tion gl valid near f = 0 which do not have the required J order behavior. This results
in two further linear homogeneous equations to be satisfied by the unknown constants
which are of the form

B°r + i; arEl = 0 (3.15)
r-0

and
oo

£ 5rE° = 0, (3.16)
r = 0

where ar and dr are non-zero constants.
(c) Downstream infinity (f = b and f = 5*). In the basic flow the jets diverging from

the edges of the plate asymptotically become straight uniform jets. One can investigate
the behavior of a straight jet when subjected to small disturbances using the approach
described in Lamb's Hydrodynamics (Chapter IX). Such a flow is found to be neutrally
stable and any disturbance is propagated downstream unchanged with the velocity of
the jet. We shall demand that our perturbed flow behave like a straight jet as we approach
downstream infinity. Hence, an observer moving with the asymptotic jet velocity will
see no change in the velocity perturbation w2. If we express this fact by means of the ma-
terial derivative of w2 we find that the boundary condition demands that limf-«6(f — b)~Kg°
and lim r-.6*(f — 6*)~x ga exist.

An examination of the solutions valid about b and b* shows them to be derivable
from each other by a simple interchange of the roles of b and b* and hence only one of
the conditions has to be applied.

It is found that the terms of the complementary solution satisfy the boundary con-
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dition for any value of X. By investigating the behavior of the integrals making up the
particular integral, it can be shown that the term in (f — b)~ygn with the least real part
of the exponent of (f — b) has a non-zero coefficient and hence the boundary condition
demands that the real part of the exponent be greater than zero. This implies that

R + Re {X} < 1 — rmtx (3.17)

where rmas is the greatest r for which we must have E° 0. From (3.16) we see that,
since El t6 0, rmax must be at least as great as one. Hence, the inequality becomes

R + Re {X} < 0 (3.18)

(d) Upstream infinity (f = 1). The basic flow originates from a source point at
upstream infinity. Since we do not wish the perturbations to alter the fundamental
nature of the entire flow we shall demand that the perturbation velocity w2 and the
perturbation pressure p2 vanish at upstream infinity. These conditions will be satisfied
if (f — \)g1 and <f, respectively, vanish as f —* 1.

Since the point f = 1 is a regular singular point of the differential equation, however,
our knowledge of the behavior of the solution at such a point shows that these conditions
are redundant and only one, say the latter, will be applied.

We must show that in the neighborhood of f = 1 the expression for gl consists of
terms which go to zero as f —» 1 or that any terms which do not go to zero have a co-
efficient which is zero. If one examines the solution g£ near <" = 1, one finds that the
dominant term from the complementary solution behaves like (f — 1)~2X while the
dominant term contributed by the particular integral is either (f — 1)-2X or (f — 1)2S+1,
depending upon the relative magnitude of R and Re {X}. As yet, R and Re {X} are re-
stricted only by the inequality (3.18). We can now proceed to investigate the various
manners in which the boundary condition at f = 1 may be satisfied depending upon
which of the following inequalities is applicable:

(i) 2R + 1 < Re {— 2X},

(m) 2R + 1 = Re { — 2X}, (3.19)

(Hi) 2R + 1 > Re {—2X).

Consider, for example, Case (i). The term (£ — l)2/i+1 has a non-zero coefficient;
hence, the boundary condition demands 2R + 1 > 0 which gives R = 0, 1, 2, • • • and
then the inequality shows Re {X} < — In a similar manner one finds in every case
that Re {X} <0.

(2) Symmetric solutions. The application of the boundary conditions to the symmetric
perturbations proceeds in the same manner as in the antisymmetric ones. We again find
no admissible perturbations with Re {X} > 0.

E. Admissible complementary solutions. One may consider the possibility of satisfying
the boundary conditions with solutions containing only terms of the complementary
solution. In both the antisymmetric and symmetric case one can readily show, however,
that there are no such solutions capable of satisfying all the boundary conditions.

F. Conclusions as to the stability of the basic flow. Although we have not found a one-
dimensional continuum of eigenvalues X, our present analysis has been able to restrict
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the possible values of X to the left half of the complex X plane. This shows that any
admissible perturbation has Re {X} < 0 and we conclude that a jet impinging normally
upon a finite plate gives a neutrally stable or stable flow configuration.

The results of this analysis are valid for any finite but non-zero ratio of plate width
to jet width (d/D). By making this ratio as small as we please, we can consider the flow
of a jet of arbitrarily great width past a finite plate. But this is a proper physical in-
terpretation of the Helmholtz plate problem since one never has a truly infinite stream in
reality. From this point of view, the stability conclusions reached in this section apply
to the Helmholtz plate problem.

On the other hand, we find a different situation if we make the ratio (d/D) very
large but still finite. In this case the point f = — 1 continues to be an ordinary point of
the perturbation differential equation and the boundary condition z1 = 0 must always
be satisfied there. However, if one actually sets d/D = =°, the basic flow of this section
becomes that of a jet impinging on an infinite wall. Now the point f = —1 is a regular
singular point corresponding to downstream infinity and the boundary condition zx = 0
no longer applies. A reexamination of the work of the present section will show that it
was the presence of this additional boundary condition which precluded the existence
of any non-trivial unstable perturbations. Thus, as far as stability is concerned, the
limiting case {d/D) = °° corresponding to the Impinging of a finite jet on a plate of
extremely large width does not correspond to the case of a jet impinging on a truly infinite
wall. The latter problem is equivalent to that of perturbations which are symmetric
about the vertical axis of two equal and opposite jets impinging upon each other. It is
considered in Section 4.

Zo - plone

Fig. 3.

4. Equal and opposite jets. In this section we shall consider the flow of two equal
and opposite two-dimensional jets which impinge upon each other (Fig. 3).

The potential of the basic flow in the hodograph plane is readily found as that due
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to two sources at w = ± 1 and two sinks at w = ± i, all of the same strength (Fig. 4).
The flow possesses a vertical axis of symmetry as well as a horizontal one and the

perturbation problem is conveniently divided into two problems, that of perturbations
symmetric and antisymmetric about the vertical axis of symmetry. These correspond
in term to demanding that w2/w be either real or purely imaginary, respectively, on the
imaginary axis in the hodograph plane.

Wo-plone

Fig. 4.

Now if one proceeds as in Section 3 to consider the boundary conditions on w2/w
mentioned above along with analyticity and symmetry requirements and the free surface
condition, one is again led to perturbations which are solutions of an inhomogeneous
differential equation. In terms of a new variable f = w2 the equation can be reduced to a
standard form known as Heun's equation [10] and [11] possessing regular singular points
at f = 0, 1, — 1, and °°.

Again proceeding as in Section 3 we can apply the remaining physical boundary
conditions to the solutions of the perturbation equation. It is found that for perturba-
tions which are symmetric about the vertical axis of symmetry, there exist non-trivial
solutions with 0 < Re {X} < 1. All other admissible perturbations have Re {X} <0.

5. Generalized orifices. Each of the flows to be considered in this section represents
the draining of an infinite reservoir through an orifice (Fig. 5). The sides of the orifice
are made up of two semi-infinite planes inclined to each other at an angle of 2 x/n radians,
where n = 2", p = 0, 1, 2, • • • . When p — 0 the configuration becomes the Borda mouth-
piece which has been treated by Ablow and Hayes, and hence this section is essentially
a generalization of that problem.

The similarity of these flows for various n is seen by examining the potential of the
basic flow in the hodograph plane. The flow in the physical plane is mapped into a sector
of the unit circle in the hodograph plane bounded by radii inclined at an angle of ± x/n
radians to the positive real axis (Fig. 6).

To find the potential for which the circular arc and radii are streamlines, we image
the sector to cover the entire unit circle. The basic flow potentials for all n are similar
in that they may be thought of as arising from the presence of a source at the origin and
sinks on the unit circle at the n roots of unity. Thus, the potential may be written as

f0(w) = log ^2- (5.1)
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z«-plane z«-plane

(a) n s | (b) n « 2

z»- plane

(c) n«4
Fig. 5.

But if we transform to a new variable f = w" the potential becomes

/o(f) = | log ̂  f ^2 (5.2)

which provides a single representation for the potential of all the flows considered here.
We are now in a position to investigage the stability of the flows for all n by a single
analysis.

In this problem the wall streamline and free surface conditions lead to an inhomo-
geneous second order differential equation governing the perturbations which can be
put into the standard form of the hypergeometric equation having regular singular points
at f = 0, 1 and «=.

After writing the solutions to the perturbation equation, the application of the
boundary conditions, which are similar to those applied in Section 3, shows that all
admissible perturbations have Re {X} <0. One difference noted here is that it appears
possible to satisfy all boundary conditions with an antisymmetric perturbation made
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w«- plane w.-plane

(o) n « | (b) n»2

Wo-plane

(c) ns4

Fig. 6.

up only of terms from the complementary solutions. This is possible if X takes on the
values

r2 ~ii/2 N = 0, 1, 2,
X = -(22V + 1) ± | £ (2N + 1)J ,n n = 1, 2, 4, 8,

We note that for N = 0 and n=l,X=—1 + 2* which has a positive real part.
Thus, for all n but n = 1 we have only stable perturbations, while for n — 1, corre-

sponding to the Borda mouthpiece flow, there exists an isolated unstable perturbation.
6. Hollow vertex bounded by cylindrical walls. This problem is a generalization

of a problem treated by Ablow and Hayes who considered the unbounded flow about a
hollow vortex.

The basic flow is a cyclic irrotational motion with circular streamlines bounded on
the outside by a solid circular wall and on the inside by a concentric circular hollow
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vortex forming a constant pressure surface. The basic flow potential in the hodograph
plane is simply

fio(w) = i log w. (6.1)

This flow has an antisymmetric velocity distribution and hence we may no longer
decompose an arbitrary perturbation into symmetric and antisymmetric components
which satisfy the boundary conditions separately.

Due to the simplicity of the basic flow potential, however, one can assume the form
of the perturbation potential as

f2 = G,{w)ex' + G2(w)ex", (6.2)

where the forms for Gi and G2 may be deduced from a knowledge of the basic flow be-
havior as

CO

G^w) = log (w) + XI

G2{w) = B2 log (w) + X) brwr,
-co

with Bl , B2 , aT and br arbitrary constants.
Applying the boundary conditions that the circular wall remains a streamline and

that the perturbation satisfies the free surface condition (2.17) we find an infinite set of
eigenvalues

A. = -i(n ± [iV(n)]1/2)

for all n, where

N(n) I Zn
+ OL _

and a is the ratio of the radius of the hollow vortex to that of the wall; X„ is purely
imaginary and we conclude that the basic flow is a neutrally stable configuration.

Corresponding to each value of n we can now find an elementary perturbation f2n
and can generate any admissible perturbation by summing the elementary solutions
for all n. With f2 known we can evaluate the perturbation of the free surface from (2.10).
Aside from the arbitrariness introduced by the function x the perturbation is made up
of a wave pattern whose components travel at angular velocities equal to 1 ± [N(n)]1/2/n,
i.e., they either lead or lag the basic flow by an angular velocity of [N{n)]l'/n.

An interesting analogy with the propagation of gravity waves in water is found when
the ratio of the depth of fluid between the vortex surface and the walls, to the radius of
the vortex surface is made very small. At the same time we consider a fixed but arbitrary
ratio of depth of fluid to wave length y of the disturbance. The propagation velocity of
the disturbance is found to be approximately

,2 y 2^c — -—^tanh
2wa 7

where h is the depth of fluid between the free surface and the wall. This is identical with
the velocity of the propagation of a gravity wave in water if (1 /a) is replaced by the
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acceleration of gravity g. The term (1 /a) represents approximately the centrifugal
acceleration throughout the fluid for the case of small depth.

This problem has also been solved by Lord Kelvin in a different manner and after a
change of notation the results presented here are seen to agree in detail with those found
by Kelvin.
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