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PLASTIC FLOW IN A DEEPLY NOTCHED BAR WITH SEMI-CIRCULAR ROOT*
BY

ALEXANDER J. WANG
Brown University

Summary. The unsteady motion problem of a circular-notched bar pulled in
tension in plane strain is considered. The theory of perfectly plastic solids is used. Large
strains are analyzed so that the material can also be considered as plastic-rigid. The
basic equations governing stress and velocity are integrated independently in the char-
acteristic plane. The results are used to construct the boundary change in a step-by-
step manner. The problem is greatly simplified because at each step the new free boundary
of the plastic region can be approximated by a circle. The final shape of the boundary
of an initially semi-circular notch is presented when plastic flow has reduced the initial
connection at the root to a line contact between the shanks.

1. Introduction. We consider the plastic flow in a deeply notched bar under tension
with semi-circular root. For a deep notch, the plastic flow is localized in the vicinity
of the root of the notch and the parts remaining elastic prevent appreciable lateral
contraction, thus allowing us to consider the plastic flow to be in plane strain. The
present paper follows a series of other papers on the deformation of notched bars under
tension with ^-shaped roots [1]** and rectangular roots [2]. The former is a quasi-steady
case in which the configuration maintains geometrical similarity. The latter is an un-
steady case in which the analysis can be readily made by building up some known
solutions of slip line fields. The present treatment is another attempt at an unsteady
case. Furthermore, since actual specimens have circular fillets at the corners, the result
can also be extended to interpret such tension experiments. Thus this solution may
help to examine more completely the singularities created by sharp corners in the pre-
vious cases.

The present paper limits itself to the case when the plastic region extends only to
the circular part of the notch, Fig. 1 where C'0BC0 is the circular part and C0D, C'0D'
are the linear parts of the free boundary. The case when the plastic region extends to

Fig. 1.

*Received February 11, 1953. This work was sponsored by Watertown Arsenal Laboratory under
Contract DA-19-020 ORD-1117.

**Numbers in square brackets refer to the references at the end of the paper.
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the linear part of the notch and the case of a circular fillet will be considered in later
work.

We shall use plastic rigid theory. It is valid here as well as in most metal forming
problems, since plastic flow needs to be analyzed in the regions of large flow only. We
shall also consider the material to be perfectly plastic, i.e., plastic flow occurs at a con-
stant stress limit. It is not equivalent to neglecting work-hardening, but rather to averag-
ing its effect over the field of flow. The basic theory of such analysis has been fully
discussed in the recent literature [3], [4], [5]. Accordingly, only a brief r6sum6 of the
final equations is given below.

2. Equations governing plastic flow in plane strain. In the plastic region the stress
has to satisfy the yield condition and the .equilibrium equations. In plane strain these
three equations lead to a pair of first order hyperbolic equations having two orthogonal
sets of real characteristics commonly called slip lines. The equations expressed in terms of
these lines as coordinates (called the canonical form in the theory of partial differential

Fig. 2.

equations) take on a particularly simple form. Referring to the notation of Fig. 2, the
equilibrium equations become

p + 2hp = constant along an a-line,
(1)

p — 2ktp = constant along a /3-line,
and so

d2<p
da 3/3

= 0. (2)

Equation (2) governing the slip line field can also be expressed in terms of the radii
of curvature R, S of the a and /3 lines respectively, giving the alternative relations

dS + R d<p — 0 along an a-line,
(3)

dR — S d<p = 0 along a 0-line.

The condition of incompressibility and the relation between stress and strain-rate
lead to a similar set of equations for velocity components. They have the same char-
acteristics. If u and v denote the velocity components along the a and /3-lines, respectively,
we have

du — v <Lp = 0 along an a-line
(4)

dv + u dtp = 0 along a /3-line.
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We shall use the convention that R, S are positive in the directions of increasing p
and a, respectively. If the curvatures of the a, p net are as shown in Fig. 2, R will be
positive and S negative, then

<p — a + P + constant, (5)

| = —a + p + constant, (6)

- p - c n\
da - ~R' dp ~ S■ (7)

We then have for (3) and (4)

( \ d2R _ n ,, . d2S _ e
da dp ' ( da dp ~ ' ( ^

d2U d'v
da d0 U' da dP

In the following, (8) will be referred to as the stress equations and (9) as the velocity
equations. They are all of the form of the telegraph equation [6].

The transformation from the characteristic plane to the physical plane is achieved
by integrating the following relations:

dx D dx „ .— = R cos <p, — = S sin <p,
aa op

dy D • &y c~ = R sui <P, -f- = — S cos <p.da op

(10)

3. Analytical solutions. Finding the plastic flow inside the plastic region requires
the solutions of equations (8) and (9) with their respective boundary conditions. The
solutions of (8) will give the shape of the slip lines at any instant. Since the slip lines
are the trajectories directed along the plane of maximum shear stress, we can find the
stress distribution throughout the plastic region. The solutions of (9) will in turn give
the strain-rate distribution at any instant. The two sets of equations can be solved
separately in the characteristic plane; thereafter they are transformed back to the
physical plane.

When the unsteady motion of the initially semi-circular notched root is investigated,
it is found that the free-surface of the plastic region maintains very closely the form of
a circular arc. To carry out the complete analysis at all stages in the deformation, it
is therefore only necessary to evaluate the stress and velocity fields for a free boundary
having circular form. This basic problem is considered in detail below.

First of all, we shall determine the constants in equations (5) and (6). By symmetry
we may consider one half of the bar. Let the free surface of the plastic region subtend
an angle 2dc of a circular arc, and take the origin at the center of the bar, Fig. 1. Equa-
tion (5) becomes

V = a + P + (II)
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On the free boundary p = — k. This determines the constant in (6), giving

| (12)
The free boundary BC therefore has the equation

-a + 13 = 6e . (13)

On the boundary we also have the relation,

« + /3=6. (14)
Next, we look for the solution to the stress Eqs. (8). Because of symmetry it is

necessary to solve for only one of the terms R or S. Hence, for <S

£fe + s = °- (15)
The boundary conditions on BC are:

R = —S = +2 U2a.
Using (7), we have

= —21/2a.
da

Making use of the fact that BC is a circular arc, we find

dS = 21/2a.
dP

The boundary conditions are therefore,

5 - —2t/2a, || = — 21/2a, || = 21/3a. (16)

This is a Cauchy problem since two boundary conditions are given on a curve which
is nowhere tangent to a characteristic. The solution is obtained by Riemann's method
[6]. The Riemann's function in this case is «/0[2(£ — a)1/2(r) — j8)1/2].

The solution is obtained by considering the general formulation of Green's theorems
which in this case reduces to the following

With the path PTQ as indicated in Fig. 3, we have,

= — 2!/2a - f+B' J0[2i(£ - P + en - u)1/2]21/2a d/3

= —21/2a{l + P/ + Pji)

-- +21 <->- d i^28)+r-«i
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where 2B = 6C — n] + £. The last step is obtained through the help of Sonine's integral
representation of Bessel's function [7].

We know, however, from consideration of symmetry that the slip lines form logarith-
mic spirals with radii of curvature

S = —2 ,/2r = — 21/2ae'~e' = -2WW. (18)

The numerical identification of (17) and (18) is readily established, but the reduction
of (17) to (18) through Bessel function recurrence relations appears to be quite com-
plicated.

Fig. 3.

By symmetry,

■R(£, v) = —£)• (18a)

The pressure distribution in the plastic region can be found easily, being especially
simple across the line of symmetry AB. On AB, — a = (3 so that

2k = ~2a ~~ 9c ~ 2'

<r„ = —p + k (tension) = 2fc(l + 6C + 2a).

With

x = a(e>c — e'*),

6J,=a + ^ = 2a-\-6c,

We obtain (see Fig. 4)

>. - log (.'• - fj.

i , -log («•■ - 2) -

<r, = 2*[l + log (eK - (19)

These relations are plotted in Fig. 4.
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Next, we look at the solution to the velocity equations (9). By symmetry we may
consider u only. Thus, we have

d u + u = 0 (20)
da d/3

Fig. 4.

With the boundary conditions

u — sin <p along AC,

v = — cos !f> = ~ along AC', (21a)
da

where U has been taken as the unit of velocities.
The last relation is obtained from Eq. (4). At the point A, we see that there is a

jump in u across AC' of magnitude 21/2. Integrating the last relation we find that, along
AC',

u = -(sin* - 21/2). (21b)

Note that the boundary conditions on the plastic rigid boundaries AC and AC depend
only on <p and not on the exact shape of the curve. Therefore, the result can be applied
for any shape of plastic rigid boundary, the particular discontinuity of 21/2 in u requiring
the body to be symmetric at least about one of the x and y axes.

The problem of solving (20) and (21) is a problem of the Riemann type since we
are given one condition on each of the two characteristics. The Riemann's function
is again J0[2(£ — a)i/2(ri — /3)1/2]. Using
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with the path PQA T as indicated in Fig. 5, we have

Up(Z, v) = u(£, 0) - f Joj^d/3—f da
Jqa op J at oa

= 21/2 - sin (f + |) + /J JoWiv ~ P)W2] cos (fl + |) dfi

.+ f j^21/2 - sin (a + |)
dJ0[2v'/2(Z - a)1/2] ^

da

0

Integrating the second integral by parts and changing the variables, we obtain

uP(i, v) = 2-1/2/0[2(-^)1/2] + /0[2(—|z)1/2] cos (v + l-z)dz

+ I0[2{riz)1/2] cos (f + - + zj dz

= 2"1/270[2(-^)1/2][l + V ~ f] + 2-/2 Z /2„[2(-^)1/2]
P=" 1

. (fa)T-JL_+ i - -i-1 - (iVr_L_ + ! _\\€/ _2p +1 2p - lj V _2p +1 2p - 1 Jj ■ (22)

The last step is obtained through the help of Sonine's integral representation of Bessel's
function [7]. The convergence of the series in the range considered is very good. By
symmetry we have

v) = — ?)• (22a)
In the step-by-step construction of the boundary, the following expressions are

useful. On the boundary

f = l(fl - O, v = hie + *e)
Hence, the radial velocity

Ur = 2~1/2(it -»)=(! + ee)Ia[{dl - 02)1/2]

- EIM - 02)1/2]
p=i

7e + e.\'(o ~ 2poc\ _ (e - ec\'(e - 2pecV
_\0 - 9j Up2 - l / \e + »«/ \4p2 - 1 /. (23)
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and the tangential velocity

U,, 2-"Xu + „) - i /.[(« - »'ri[(^t)' - {~fj] (2«

3.5 Of

These quantities are plotted in Fig. 6 for dc ranging from 0 to ir/2. At the point B,

(U,)B = 0,

(Vr)B = 21/2ub = I0(6e) + 2 jr
p-0

Since sinh 2 = 2 ^™_0 I2v+i(z) (being transformed from the expression for sin z [7]),
we have

CO

2 1/2ub = JO(0C) + sinh 6e — 4 X)
p-1

The convergence of the last expression is particularly rapid; for 4 significant figures
one term in the summation is enough, i.e.,

2l/2uB = I0{6C) + sinh 6C - 4/3(0«) (25)

The transformation functions are obtained in the following manner. With

S = — 2l/2ae'~0+a, R = 2 W2aee''0+a

we can integrate Eq. (10) obtaining

x = 2,/2a J ee'~p+a cos (a + 0 + da + f(p)
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or

= —21/2a J e1' ^+a sin + /3 + d(i + g(a)

or

x = ae9c~"+a cos (a + /3) + Cj .

At a = /3 = 0, a: = 0 so Ci = —ae'°. Therefore,

x = ae9'[ea_/s cos (a + /?) — 1].
Similarly, (26)

y = a[e''~"+° sin (a + 0)].

They appear to be quite simple, however, with a, 0 and Qe all varying with time, the
transformation functions for a generic t are very complicated.

4. Approximate solutions. Since the analytical solutions above are not in closed
form, the dependence of 0„, a, 0 on t becomes very complicated and it is much simpler to
analyze the unsteady motion by approximate means. If we represent a boundary curve
in intrinsic coordinates R and S and if we know the normal and tangential velocity com-
ponents along this curve, then the subsequent shape of the boundary will depend only on

aur Ai
85" R

the normal velocity component. Referring to Fig. 7, we have, after the time At,

= R + At[ur - i ~ (R)U'r +[/;'] + 0(At2), (27)

where we denote differentiation with respect to 0 by a prime.
For an originally circular boundary, dR/dd = 0; Ur + U'T' was numerically com-

puted for 0C = 7r/4. The result shows that if At is taken as 1, the deviation of the new
boundary from a circle with the same original center is within ±2.0% and if At is taken
as 0.1, the deviation is within ±0.4%. Furthermore, we can change the position of the
center of the circle with the resulting error of 0.33% for At = 1 and 0.14% for At = 0.1.
In the following step-by-step construction, a circle is drawn through the new positions
of B and C with the center remaining on the rc-axis. The validity of approximating the
new boundary by such a circular arc is checked all along the step-by-step process for
6C ranging from jt/2 and zero. The maximum error is about 0.2%. It is considered to
lie within our error of graphical construction.

5. Step-by-step process. After a small time increment At, an originally circular



436 ALEXANDER J. WANG [Vol. XI, No. 4

arc boundary BC will take the form B2C7 , Fig. 8. We shall pass a circle through B2
and C2 with center 02 on the z-axis. Hence,

(r + Ar)2 = cos ffc + (~^j At - Ax0J + a sin dc +

-J L<2UBAt
Fig. 8.

For the values at C, we can make use of the boundary conditions. Then,

(t)c =Ksin(i- 9<) ~v< C0S(i~ "•)

= cos 6C + sin 6e ,

(f)e = 1 + sk 9< ~ cos

(28)

r -f- Ar + Ax0 = r + 21/2uB At. (29)

>dt/c

Solving (28) and (29) for Ax0 and Ar, we obtain

Ax0 = 2U\ ~ 1 ~ Sm 6° At + 0(At2), (30)
1 COS i/g

4r _ — 2"V. cos», + i +sin». u ,
1 — cos 6C

d< + Ad< = ^TTaT2

= ec + — (1 - e~'c) - —- Ai + 0(A<2). (32)
r r

Since these algebraic equations are expressed in terms of 6C and 2U2uB only, where
2 U2uB is represented by Eq. (25), it is easier to work with these equations than to inter-
polate the results from Fig. 6.

An example for an initial 9C — -k/2 is carried out. The free boundary is found after
a small time increment At by using eqns. (30), (31) and (32). The first step is to replace
0cby 7r/2, put 21/2ub(t/2) = 3.644 in these eqns. and find the position of the new center
and the values of the new radius and of 8cl . For this new value of 6ci we can calculate
the corresponding 21/2uB . The new values of 6C and 21/2uB are then substituted in the
three equations to find out the next 6e and so forth. The magnitude of the time incre-
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ment is chosen to provide as rapid a procedure as possible in conjunction with satis-
factory accuracy. In the present example At = 0.050 with r = 1 at that instant. The
accuracy of such a step is checked by taking At — 0.025 for two steps and comparing
the result with that of one step of At = 0.050. The resulting points are indistinguishable.
However, similar comparison between two steps of At = 0.05 and one step of At = 0.10
shows that At = 0.10 yields considerable error. Therefore, the step of At = 0.05 is
taken and the resulting error is no greater than the unavoidable graphical errors. The

Fig. 9.

final shape along with two intermediate steps are shown in Fig. 9. From Fig. 8 the
initial discontinuity in slope is calculated as follows

«"■>*- }' +J?+ tPr'T(33)Axa + (r + Ar) cos (6e + A0„) — r cos 0C

For dc = ir/2 and dc + A6C = jt/2, sin (8C + A0C) = 1 and cos (6e + A6C) = — Adc

Ar — Attan ^ =
Axn — rA0,

2.644A< - 1.644A/ 1 _
. n r\c\r>(1.644e~* + 3.644)A< 3.986

^ = 14° 5'.

Note that the boundary forms a recess at the point C which is also the case for a F-notched
bar. The final angle of 63° 26' can be found in a similar manner.



438 ALEXANDER J. WANG [Vol. XI, No. 4

6. Remarks. "We note that the problem is conveniently separated into two mutually
independent ones, viz., stress and velocity solutions. These are then combined to give
the solution to the over-all problem. However, the combination is complicated by the
fact that both a and (3 are functions of time. Complicated integral expressions arise and
so step-by-step method is adopted. Fortunately, the approximation of the new boundary
by a circular arc is good, making the computation reasonably simple.
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