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THE TORSION AND STRETCHING OF SPIRAL RODS (II)*
By H. OKUBO (Tohoku University, Sendai, Japan)

The torsion and stretching problems of spiral rods were discussed in a preceding
paper.' There, the equations of equilibrium were expressed in terms of displacements
that were independent of the position of the section perpendicular to the axis of a spiral
rod. The differential equations for the displacements were integrated for the particular
case where the helix angle was small, and the corresponding displacements and stresses
were obtained. In the calculations, however, the displacements were preliminarily
assumed in special forms, and consequently solution was valid for some special problems.
In the previous paper, the displacements for the stretching problem were assumed in
forms that reduce to those for a uniform tension in the limit case when the helix angle
approaches zero. But when a spiral rod with axis that does not pass the centroid of the
cross section, is pulled axially, the displacements must be in forms that reduce to those
for a uniform tension combined with a uniform bending moment in the limit case when
the helix angle approaches zero. Hence, the validity of the previous solution was re-
stricted to the problem for a spiral rod with axis through the centroid of the cross section.

As in the preceding paper, we take the axis of helix as the axis of z, and denote the
displacements in x', y', z directions by u', v' and w respectively, in which x' and y' are
the axes perpendicular to each other and fixed to a section of the rod perpendicular to z.
We take for the displacements the expressions

yf or
u' = Ut — yx' — 7^ (a;'2 — y'2) — ay'z + p (1 — cos kz — fczsin kz),

Of

v' = vJ — yy' — y'x'y' + ax'z — 75 (sin kz — kz cos kz),
K

B'
w = w, + -7- (x' sin kz — y' cos kz + y') + /9z,

K

(1)

where ux, , to, are the functions of x', y' and are independent of z,k is a constant which
specifies the helix angle, a, 13, 13' are arbitrary constants, and

7 = I (1 - P)p, y' = \ (1 - PW, V =
From (1) we have the cubical dilatation

du, dv,
dx + dyA = 3T7 + - kD2(wt) + p/3'x' + p/3,

where

n _ „/ JL _ x> JL
°2'V dx' X dy"

'Received January 13, 1953.
'H. Okubo, Q. Appl. Math. 9, 263-272 (1951).
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The equations of equilibrium for this case can be expressed in the forms

H + v\V?U, + fc2ZMWl) - 2k'DM + \ k*y'(x'2 - y'2) - 0'} = 0,

^ + V{+ k'DM + 2 k2D2{Ul) + kVx'y'} = 0,dy

kD2( A) — p{V?Wi + + k2Wi — kfi'y') = 0,,
where

(2)

'~ir- + ir" and D'+1 ~ ~x'w)(*'£ ~ 3)-V? =

The differential equations (2) are independent of z. Solving the simultaneous equa-
tions for Ui , vl and v), , we can find the displacements from (1). The displacements
for a straight rod are readily obtained from (1), by taking the limit case when k ap-
proaches zero; thus

u = -yx - ayz - (z2 - y2) -p-z\

v = —T y + axz — y'xy, (3)

w = Wt -f |8z + /S 'xz,
where , Vi are assumed to vanish when k approaches zero.

Assume that Wi and a in (3) also vanish when k approaches zero; the corresponding
stresses become

Xx = Yv = Xy = X, = F2 = 0, Z, = m(3 - p)C8 + p'x). (4)
This is the solution for a straight rod submitted to simple tension combined with a
uniform bending moment. If we assume that /3 and /3', instead of w\ and a, vanish when
k approaches zero, the corresponding stresses become

X, = Y, = Z, = Xy = 0, X, — - ay), Yz = + ax). (5)

This is the solution for the torsion problem of a straight rod.
Consider now a spiral rod of small k, pulled by a pair of axial forces. Assuming that

a, Wi are small quantities of the order k and ux , vt are of the order k2, and neglecting the
small quanties of the higher order, the equations of equilibrium (2) can be written as
follows:

| pk2y'(x'2 - y'2) - p/3' = 0,

+ pVlv! + pk2y'x'y' = 0, (6)

- 2fc/sy = o.J
Let us take for Wi the expression

Wi = i(J3 ~ /s) + IWy'3, (7)
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where /3 is an arbitrary function, f3 is a function conjugate with f3, and

/a = /3(f), 73 = r = x' + iy', } = x' - iy'.
The displacement satisfies the third Eq. (6). Substituting this expression of wt into
the first and second equations (6), the equations for Ui and Vi become

^ d2Ui , d2vt , d2ut
(i + + +

= k(tt + n+ tn> + tfV) - | vkWx" - I (4 - p + p2)k2(i'y'2,
n2». n2„. 32„.aw, a Mi . , a

+ (1 + p)a75
= - n + r/r - r/n -1 (4 + P - pW^y.

Integrating the differential equations (8), we find

Mi = /i + /i + z'(/2 + /2) + k J fsf d£ + k J /3^

+ ^|" Ip(3 - p)z'4 - 6(4 + p - p2)x'2y'2 + (6 - p - p2)?/'4},

fi = i(/i - fi) + ix'U* ~ ?2) + «(1 + 2P)(f - J /3 df),
where /1 , /2 are arbitrary functions of f. The corresponding stresses become

x:. = 2m{/; + 7; + *'(/; + 7o + p(/3 + 7.) + mtn + Tfd

+ ^ (3 - p)(l + p)fc3/S^'3 - | (9 - pW*Va},

Y'v. = -2m|/( + 7( + ®'(/J + JO + (2 + p)(/2 + 70

- ^(3 - p)(i - p)^'x'a +1 (i - pW*y2},

Z. = — 2m{(1 - p)(/2 + 70 + *(f/a + fjfO - ^ U - P)(3 - p)fc2/?V3

- | (7 + 2p - pW*Va - | (3 - p)(/3 + /3V)};

x;. = 2fM{/i' - 7i' + *'(/; - 7q + (i + p)(/2 - 7.) + \ (Vi - Vn)

+ | (4 + p - p2)k2fi'x'2y' - i (6 - p - pWy'3},

x; = M{*(« - /a) - «»' + fr/WI,

r; = -m{/3 + 7a - «*' - W + ^ (*'2 - ?/'2)}.

(8)

(9)

(10)
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Take for the bounding curve of the section, the expression

F{x', y') = 0. (11)

The conditions for the lateral surface of the rod to be free from external forces are

+ kD^F)x- = °'

X't. ^ + Y'v. - kD2(F) Y: = 0,\ (12)

X'- M(3 ~ m + ^X')Di{F) = °-

Consider a spiral rod stretched by a pair of axial forces P, and imagine a small portion
of the rod cut by two parallel planes perpendicular to the axis of rod, as shown in Fig. 1.

(13)

The equilibrium condition of the surface tractions for this portion is

ff Z, dx' dy' = P,

JJ' Z,x' dx' dy' = 0,

ff (y'X', - x'Y',) dx' dy' = 0,
where the integrals are taken over the cross section.

The arbitrary functions /, , f2 and f3 are determined so as to satisfy the boundary
condition (12), and the constants a, j8 and /3' are obtained from the condition (13).
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Substituting the expressions of X', , Y[ in (10) into the third Eq. (12), it becomes

£ a, + ?,) -11« + <3 - i>m £ (ft)

- i (11 - 3PW p)W | - 0,

where (is is the element of arc of the bounding curve of the cross section. It follows that
the equation

/, + /, = | |a + (3 - p)kp\(x'2 + y'2)

+ J2 01 ~ 3p)k[i'x'3 + | (5 — p)k0'x'y'2 + const., (14)

holds on the bounding curve, from which /3 is determined. For the convenience of further
calculations, we shall rewrite the stresses X'r- , Y'u. and X'y. in (11) in the expressions as

X'x = + 2+ f/0 + (3 - p)( 1 + p)k?f}'x» -1(9- p2)k2p'x'y'2,

(15)

where

X — —Vi — — x'(<P2 + ^2), <p[' — 2n(f[ + pf2), f'2 — 2m/2 •

Substituting these expressions for stresses into the first and second Eqs. (12), by
virtue of (14), we obtain

d (dx , . dx \ , , d r rr / <_\ a r~Z\i i 1.2 ol d$

(16)

I (3 - p)^'f | (ff) - | (3 - p)nk2p'x'2y' £ (f + 3f) = 0,

d {dx ,dx\ , d rz? /vs imi 1 i,2o'

- I (3 - p)M2/3'F £ (ff) + I (3 - p)nk2(}'x'2y' | (3f + ?) = 0,

where

F'a = 2f/i ,
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$ = [(11 + p)(3 - v)x'4 + 6(1 - p)W* - (9 - 2p + ~p)y'A]

+ J2 (3 - P)K1 + p)*'2 - (7 + p)y"W.
From (16), /i and /2 are obtained.
As an example of the procedure, consider an elliptic spiral rod whose cross section is

(*' - w + y'2/tf = 1, (17)
as shpwn in Fig. 2.

Transform now the elliptic section in the f-plane into a unit circle in the i-plane by
the equation

f = c a't -f- b't (18)
where a' + b' = a, a' — b' = b.

Take for the function f3 , the expression

f3 = Cl(t + »r') + C2«2 + s2r2) + c3(f + s3r3), (19)

where S = b'/a'. The unknown coefficients Ci , c2 and c3 are readily obtained from the
boundary condition (14).

Remembering the condition that ip, and <p2 are analytic at any point of the section in
the /'-plane, we take for the functions the expressions

<P i — An(t" + snt "), tp2 — X/ "), (20)

where A„ and Bn are real constants. These unknown constants are obtained from the
boundary condition (16), and the other unknown constants a, (3 and j8' are finally obtained
from the conditions (13).

In the case of stretching, the predominating stress is the normal stress Zz and the
shearing stresses X[ and F' follow it, but the latter are smaller quantities of the order k.
The other stresses are of the order k2 and are very small quantities when k is small.
When the section of the spiral rod is a circle of radius unity, then a = b — 1, and it
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follows a' = 1, b' = 0, s = 0. The main stress Z, for the circular section, referred to the
polar coordinates with the pole at the center of the circle, is

Z, = m(3 — p)( |3 + P'c) — 2(1 — p)Bl — AfjkCiC

+ [mi8'(3 — p) — 4(1 — p)B2 — 4fik(2c2c + cO]r cos 6

— 2[3(1 — p)B3 + 2m/c(3c3c + 2c2)]r2 cos 26 — 4[2(1 — p)Bt + 3nkca]r3 cos 30 (21)

+ J2 ~ P)(3 - V)(c + r cos 6)3

+ | nk2()'(7 + 2p — p2)(c + r cos 0)r2 sin2 6.

From the third Eq. (13), we have

« = HI ~ PWc. (22)
Hence, a twist almost proportional to k arises when a spiral rod with a circular section

Fig. 3. The shearing stress along the bounding circle, when k = 0 25.
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is pulled axially.2 From the remaining Eqs. (13), the other unknown constants /3 and
/?' are obtained.

If r be the shearing stress along the bounding circle of the section, it becomes

} = — m{[2ci — |&/3'c2(1 — p) — \pkfi'] cos 0 + 4c2 cos 20 + (6c3 + \kB') cos 30}. (23)

The shearing stress along the periphery has been calculated from (23) for various values
of c, assuming the Poisson's ratio and k to be 0.3 and 0.25, respectively, and is shown
in Fig. 3. As is seen from the figure, the shearing stress becomes large at both ends of two
diameters parallel to the coordinate axes (xy'), and attains its maximum value at the
outer end of the diameter on the z'-axis. The distribution of the normal tension Z. on
the axis of x', obtained from (21), is given in Fig. 4. For the sake of comparison, the

>C-0S

sC-/.0

\C-1S\

Fig. 4. The distribution of Z, on the x'-axis, when k = 0.25.

corresponding distribution of Z, for a straight rod is also shown by dotted lines in the
same figure.
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2(S' is a function of k and c, but it remains almost constant for the variation of k, when k is small.


