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ON' SAINT-VENANT’S PRINCIPLE*

BY
E. STERNBERG
Tllinois Institute of Technology

Introduction. The principle bearing his name was introduced by Saint-Venant [1]!
in connection with, and with limitation to, the problem of extension, torsion, and flexure
of prismatic and cylindrical bodies. The first' universal statement of the principle is
apparently due to Boussinesq [2], and reads:® “An equilibrated system of external
forces applied to an elastic body, all of the points of application lying within a given
sphere, produces deformations of negligible magnitude at distances from the sphere
which are sufficiently large compared to its radius.” Love [3] writes:® “According to
this principle, the strains that are produced in a body by the application, to a small
part of its surface, of a system of forces statically equivalent to zero force and zero
couple, are of negligible magnitude at distances which are large compared with the linear
dimensions of the part.”

As pointed out by v. Mises [4], the foregoing statements are in need of clarification*
gince the forces applied to a body at rest must be in equilibrium in any event. Only
when the body extends to infinity, and provided we require the tractions at infinity
to vanish suitably, is it meaningful to speak of the strains “produced” by a non-equili-
brated system of forces applied to a bounded part of its surface. Moreover, in this instance,
the strains produced by a given loading are arbitrarily small at points sufficiently far
removed from the region of load application, regardless of whether or not the loading
is self-equilibrated.® On the other hand, the stresses and strains at a fixed point of an
elastic body, in the absence of body forces, may be made arbitrarily large or small by
choosing the magnitude of the loads sufficiently large or small. These observations further
confirm the need for clarification.

What is meant by the statements cited may roughly be expressed as follows:® if
the forces acting on an elastic body are confined to several distinct portions of its surface,
each lying within a sphere of radius ¢, then the stresses and strains at a fixed interior
poiut of the body are of a smaller order of magnitude in ¢ as e — 0 when the forces on
each of the portions are in equilibrium than when they are not. In this comparison
we must evidently assume that the forces remain bounded as ¢ — 0. The analogous
interpretation for distributed surface tractions is immediate.

It should be noted that such an interpretation is implied in the usual applications of
Saint-Venant’s principle. Moreover, that this is what Boussinesq had in mind is apparent
from his efforts to justify the principle. With this objective, Boussinesq [2] considered

*Received January 5, 1953.

!Numbers in brackets refer to the bibliography at the end of this paper.

28ee [2], p. 298. (‘“‘Des forces extérieures, qui se font équilibre sur un solide élastique et dont les points
d’application se trouvent tous & l'intérieur d’'une sphére donnée, ne produisent pas de déformations
sensibles & des distances de cette sphére qui sont d’une certaine grandeur par rapport & son rayon.”’)

3See [3], p. 132.

4See also, for example, Biezeno and Grammel (5], where the traditional statement of the principle is
discussed in detail.

5See the general solution to the problem of a semi-infinite medium bounded by a plane, [3], art. 166.

$This interpretation follows v. Mises [4].
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a semi-infinite body under concentrated loads acting perpendicular to its plane boundary.
He showed that if the points of application of the loads lie within a sphere of radius e,
the stresses at a fixed interior point of the body are of the order of magnitude e provided
the resultant force is zero, and of the order ¢’ in case the resultant moment also vanishes.
Various energy arguments have since been advanced in support of the principle.”

In 1945 v. Mises [4], in his illuminating paper on this subject, showed with the aid
of two specific examples that the usual statements of the principle, when properly
clarified, cannot be valid without qualifications. The two examples chosen by v. Mises
are the three-dimensional problem of the half-space and the plane problem of the circular
disk, each under concentrated surface loads.® On the basis of these examples v. Mises
proposed an ameuded principle.

It is the purpose of this paper to supply a general proof of Saint-Venant’s principle
as modified by v. Mises. The argument is carried on for the case of piecewise continuous
tractions and is later extended to concentrated forces; it applies to finite and infinite
domains of arbitrary connectivity.’

The dilatation formula of Betti. As a preliminary to the proof, we recall here a
formula due to Betti,'’® which is a consequence of Betti’s reciprocal theorem. Let D
be a regular'’ (not necessarily simply connected) region occupied by an elastic medium,
and let B be the boundary of D (Figure 1). Furthermore,'® let u, e;; , and 7,; be a dis-
placement field, a field of strain, and a field of stress which within D satisfy the funda-
mental field equations of the linear theory of elasticity in the absence of body forces.
If r;; gives rise to piecewise continuous surface tractions T = [X, , X, , X;] on B, then
the dilatation A® = e2 at a fixed interior point Q(¢, , & , &) of D is given by,"

cA°=fBT-gdB, c=8—"%‘, (1)
where p and » are the shear modulus and Poisson’s ratio, respectively. In (1), g is a
displacement field which is defined as follows:

g=¢g +8g"’ g =—-gradR', R=|R]| 2

where R is the position vector with respect to Q of a point P(z, , z, , ;) of D (Figure 1).
Moreover, g’ is that displacement field which satisfies the equilibrium equations within
D and gives rise to surface tractions on B which are equal and opposite to those associated
with g’. Thus g is characterized by the requirements that (a) it satisfy the equilibrium
conditions inside D with the exception of the point Q where it must have the singularity
appropriate to a center of dilatation, and (b) its associated surface tractions vanish on B.
We emphasize, for future reference, that g is an analytic function of position on any
analytic portion of B. Betti’s formula remains valid if D is not bounded, provided that
R*r;; > 0asR >,

"See References [6] to [11] and [18].

sMore recently, Erim [12], applied v. Mises’ analysis to the half-plane under concentrated loads.

9The restriction that the region be simply connected turns out to be unessential.

103ee (3], p. 235.

UThe term “regular region” is used in the sense of Kellogg [13], pp. 113, 217.

12Throughout this paper letters in boldface designate vectors; the subscripts ¢, j assume the values
1, 2, 3, and the usual summation convention is employed.

13The symbols - and X designate scalar and vector multiplication of two vectors, respectively.
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The vector field g plays a role analogous to that of Green’s function in potential
theory. Equation (1) reduces the determination of the dilatation in the second boundary-
value problem (surface tractions prescribed) to the determination of g”. We note that
the function g is completely characterized by the shape of D and the location of Q,
and is independent of the surface tractions T. This observation provides the key to the
subsequent proof of the modified Saint-Venant principle in which we are confronted
with the task of comparing the effects of certain changes in the loading upon the de-
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formations and stresses at an interior point of the body. Before turning to our main
objective, we consider two specific applications of Betti’s formula.
The sphere and the half-space as examples. Let D be a sphere with radius a and let
@ be its center. Here, trivially,
, 2(1 — 2»)R
& = e @
and by (1), (2), (3),
3(1 — 2v) f
e _ - 4 .
AV = 8r(l £ Wud® BT R dB. 4)
If the loading, in particular, consists of two equal and opposite concentrated forces,
each of magnitude L, applied at the endpoints of a diameter and directed toward @,
a trivial limit process applied to (4) at once yields,

3(1 — 2y)L

T 4x(1 + Y)ud® ) ®)

A® =
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This formula was derived by Synge [14], by Weber [15], as well as by F. Rosenthal
and the present author [16], in each case by entirely different means.

Next, let D be the half-space z; > 0 and B the plane z; = 0. In this special instance
a closed representation of g is available'* corresponding to any interior point Q(¢, , &, &).
Indeed, let

¢ = [(x, — 51)2 + (z, — fz)2 + (zs + 53)2]'”% (6)

so that ¢ is the reciprocal of the distance between P(z, , z. , ;) and the mirror image
of @ in the plane z; = 0. Then, as is readily verified,

e (3 — 4y % 9 _ 9 | _ 9
g’ = -0 4")[axl ' 91, 8:::3] 2z grad 5 @
and, according to (2), (6), (7), on the plane z; = 0,
g = —4(1 — »)[grad R ]cerm0) - 8
Equations (1), (8) imply,
e __ __ (1 - 2”) . -1
2 = = oo fBT grad R~ dB. ©)

An elementary limit process applied to (9) yields the formula cited by v. Mises'® for
the dilatation at @ induced by a concentrated load acting at the origin z; = 0.

Proof of the modified Saint-Venant principle. Let D, with the boundary B, again
be a regular region'® of space of arbitrary connectivity. Let Sy(k = 1,2, --- m) be m
non-intersecting closed subregions of B which lie within neighborhoods of m distinct
points PS¥ (position vectors 1) of B, each S, , P" being wholly contained within a
sphere of radius ¢, (Figure 1). We note that S, need not be simply connected or even
connected.

Let u, e;; , 7;; be a solution in D of the field equations of elasticity theory, the body
forces being absent, which corresponds to piecewise continuous surface tractions
T = [X,, X,, X5] on B." Moreover, let T vanish on B with the exception of the sub-
regions S, .

According to Betti’s formula (1),

A° = ,‘Z A%[S),  cA%S.] = .8 T dB (10)
-1 k

where A°[S,] represents the “contribution” from the tractions on S, to the dilatation
A at a fixed interior point Q of D. We observe that a A°[S,] possesses individual phy-
sical significance only if the tractions on S, are self-equilibrated, unless D extends to
infinity. Furthermore, if D is bounded, either the tractions on each S, are self-equili-
brated, or there are at least two S, for which this is not true.

We now examine A°[S,] and, for the sake of convenience, henceforth write S, P, , 1,

WThis result is apparently due to Cerruti. See [3], p. 239.

15See Equation (4) of [4].

16See Footnote 11. Again D need not be bounded.

7If D is not bounded, we require 73r;; — 0 a8 r — «, where r = | r|, and r is the position vector of a
point P of D.
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in place of S, , P¢”, r;"’. Let S and P, be contained in an open simply connected sub-
region S* of B (Figure 1) which admits a parametrization of the form,"

r= l'(a, ﬁ)) Ty X rﬂ ?5 O, (a; ﬁ) 111 2* (11)

where r = [z, , z, , x5] here is the position vector of a point P of 8*, =* is an open simply
connected region of the (a,8)-plane, and r(e, B) is assumed to be at least twice contin-
uously differentiable in *. Thus B is assumed to have finite and continuous curvatures
in S*. The mapping (11) defines a regular curvilinear coordinate net on S*. It is con-
venient to require that

r, = r(0, 0). (12)

Finally, suppose that the closed subregion = of =* is the antecedent in the (a,8)-plane
of the subregion S of S*.

From (10), by virtue of the regularity of g on B, we have, on expanding g(«, 8) in
a Taylor series (possibly with a remainder term) at (0, 0),"°

(S =g [ Tdo+gh- [ Tado+gs- [ TBdo + - (13)
S - S S
where,
fda=/ln.><r,,|dad/3. (14)
S z

Before drawing any general conclusions, let us apply (13) to the example of the
half-space. Here D is the region z; > 0 and B the plane z; = 0. We may choose the origin
z; = 0 at P, , employ B as S* and adopt the parametrization,

a =x, B=x9. (15)
By (8), in this instance,
g(a) ﬂ) = = ‘g'lTB;_V) [51 ) & — 67 £3]
, (16)
R=[& -+ E&—8"+&]"7°

Substitution of (16) into (13) yields, except for differences in notation and a constant
factor, the expansion derived by v. Mises by other means, provided the integrals in
(13) are replaced with the corresponding finite sums.*

We now return to (13) and to our main objective, which is to examine the order of
magnitude of the dilatation at the fixed interior point @ of D in relation to the size of
the region S, under various assumptions regarding the tractions on S (e.g., if the trac-
tions on S are or are not self-equilibrated). To this end we first recall the mathematical

8The subscripts «, 8 denote partial differentiation with respect to the argument indicated. The
existence of such a regular parametrization is assured in the small, provided S* is sufficiently smooth.
Note that the embedding regions S’ , belonging to the various Sk , P$¥, in general, require different
parametrizations. :

19The superscript zero attached to any function of (e, 8) refers to its value at (0, 0).

203ee Equation (7) of [4]; this equation gives the mean normal stress rather than the dilatation at Q,
and applies to concentrated forces. The transition from distributed tractions to concentrated forces will
be discussed later. See Equation (29) of this paper.
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meaning of the concept of “order of magnitude’”. If*!
| f(x)/2* | < M (M independent of ) as z — 0, then f(x) = 0("), (17)

that is, f(z) is said to be of the same order of magnitude as z°. It is clear from (17)
that the question as to the order of magnitude of A°[S] in (13), with respect to the
radius € of the sphere enclosing S and P, , has no meaning since ¢, is a number and
not a variable.

The foregoing question becomes meaningful, however, if we ask what happens in
the limit as the region S is contracted to the fixed point P, of B. To make this idea
precise, consider a one-parameter family of closed subregions S(e) of S* such that for
every ein 0 < e < ¢, S(e) together with P, lies within a sphere of radius ¢, S(e;) = S,
and the maximum diameter d(e) of S(e) is 2 monotone increasing function of e. Next,
let u(e), e,;(e), 7:;(¢) (0 < € < &) be a one-parameter family of solutions in D of the
field equations of elasticity theory, the body forces being absent, which satisfies the
following conditions: u(e,) = u; 7,;(¢€) gives rise to piecewise continuous surface tractions
T(e) = [X,(e), Xo(e), X3(e)] which vanish on B with the exception® of the subregions
S(e); T(e) remains bounded as ¢ — 0.

Writing A%(e) for A%[S(e)], we have from (13), (14),

cA%e) = g° - f T do + & - f T do
S(e) S(e)
+g- [ TOsde+ -, 19

da=f | to X 15 | de dB, (19)
S(e) Z(e)

where Z(¢) is the antecedent of S(¢) in the (e,8)-plane. Furthermore, in view of the
regularity of the mapping (11), and from (12),

5(e) = max @+8)Y?*—>0 a €e—0 and 5 = 0(e). (20)
Let ‘
F(9) = fm T() do, M() = fs

Thus, F(e) and M(e) are the resultant force and the resultant moment in O(r = 0) of

the tractions on S(e). Equation (18), in conjunction with (19), (20), (21), now yields
the following conclusions:

T X Tde (0<e<e). (21)

(e

(a) F(e) # 0 (0 < € < «), in general, implies A°(e) = 0(¢*). Exceptions are possible,
however. In the example of the sphere, we see from (4) that A? = 0 whenever the surface
tractions are purely tangential, provided @ is the center of the sphere.

(b) A%e) = 0(€) or smaller if F(e) = 0 0 <e<Le).

(¢) A%e% = 0O(") or smaller if

F(o = 0, fs TW@ads =0, fs _T@Bde =0 (O<e<e). (@)

21This limited form of the definition is sufficient for our purposes.

2Recall that S(e) stands for Sk(e) (k = 1, 2, - -+ m). The piecewise continuity of T does not refer to
its dependence on ¢ for which no continuity requirements are imposed.
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Within terms of 0(¢®), Equations (22) are equivalent® to the 12 scalar conditions,
f X9 do = 0, f X(9z,do =0 (0 <e<e). (23)
S(e) S(e)

Hence, if the tractions on S(e) satisfy (23) then A%(e) = 0(e*) or smaller.
(d) Equations (23) imply,

F(9 =0, M(e =0 0 <e<e), (29

but the converse is not true, in general. Within terms of 0(¢®) the equilibrium conditions
(24), in view of (21), (11), are equivalent™ to

FO =0, r.X f Ta do + 15 X f T(8do =0 (0<e<e). (25
S(e) S(e)

Again, these conditions are met if (22) hold, but (22) do not follow from (25). Thus,
if the tractions on S(e) are self-equilibrated A°(e) = 0(¢®) or smaller. This conclusion
contradicts the interpretation of the traditional statement of Saint-Venant’s principle
cited in the Introduction, according to which the order of magnitude of A®(e) should
always be smaller when the tractions on S(e) are self-equilibrated than when they are
not. _

(e) Suppose, in particular, the tractions on S(e) are parallel, so that

T, B; =kT(x,8;9 in  Z(9 (0<e<e), (26)

in which k is a fixed vector and T a scalar function. Here (23) are satisfied if and only if
(24) hold for every choice of k, that is, if and only if the system of parallel tractions
remains in equilibrium under an arbitrary change of its direction, the magnitude and
sense of the tractions being maintained (“astatic equilibrium’). Therefore, in the event
the tractions on S(e) are parallel and in astatic equilibrium, A°(e) = 0(e*) or smaller.

(f) Suppose (26) holds and, in addition,

k- (ro X 15 #0, 27

so that k is not parallel to the tangent plane of S* at P, . Then (25) imply (22). Hence,
if the tractions on S(e) are parallel to each other, self-equilibrated, and not parallel to a
tangent plane of S*, then A%(e) = 0(e*) or smaller. The analogous conditions for concen-
trated forces were satisfied in the special example investigated by Boussinesq [2] and
described in the Introduction.

We have so far considered only the order of magnitude of the dilatation. According
to Lauricella,” the strains e at an interior point Q of D, in the absence of body forces,
admit the representation,

¢ = [T g, a8 28)
B

which is analogous to that given by Betti’s formula (1) for the dilatation A°. Here the
8:; are displacement fields which satisfy the equilibrium conditions inside D, with the

#In case S* is plane, and for the parametrization (15), the equivalence is exact.
#See [3], p. 216.
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exception of the point  where they have certain prescribed singularities,?® and which
give rise to vanishing surface tractions on B. Clearly, the g;; are again regular on any
regular portion of B, and the previous argument applies without modification. Therefore,
the conclusions listed under (a) to (f) remain valid if A%(e) is replaced with e2(e), and
hence with r3(e). If a rigid displacement of the whole body is excluded, the conclu-
sions also apply to the displacement u®(e), as follows from Somigliana’s representation
of the displacement field.*® Specific illustrations of these general conclusions were given
by v. Mises in [4].*"

Extension to the case of concentrated forces. Remarks. The theorem proved in the
preceding section is readily extended to concentrated forces. With reference to (13),
let the concentrated forces T, = [X|”, X;”, Xi”] (n = 1, 2, --- N) be applied at the
points A, of S* the points of application together with P, lying within a sphere of
radius ¢ . Let r™ = [z.”, z;", ;"] = r(a. , B,) be the position vector of 4, . Now
consider an S consisting of N non-intersecting closed subregions S of S* such that
each S is simply connected and contains A4, in its interior. Proceeding to the limit in
(13) as S™ is contracted to A, while [sw T do — T, , we obtain,*®

N N
A8 =g 2 T.+g% > T,
n=1

n=1

N
+e - LT+ (29)
The conclusions previously reached, therefore, remain valid for concentrated forces
provided the integrals in (18) to (25) are replaced with the corresponding finite sums,
and provided O(¢*), O(é®), O(¢*) are replaced with O(1), O(e), O(€’), respectively.

At this place we discuss an example which may serve to clarify the implications of
the theorem established earlier. Consider a bar of the general shape indicated in Figure 2.
Let the bar be acted on by the two equal, opposite, and collinear concentrated loads,
each of magnitude L, the region S consisting of the two points of application 4, and 4. .
According to conclusion® (d), in this instance 7.3(¢) = O(e) or smaller, where Q is,
say, the fixed interior point shown in Figure 2. Since we may choose the two ends of
the bar as close together as we wish, a careless interpretation of (d) may lead to the
absurd prediction that the stresses at @, for arbitrarily large fixed magnitudes of the
loads, can be kept as small as we wish. The paradox is resolved by observing that the
shape of the bar is given once and for all, and that a definite gap, however small, exists
between the two ends of the bar. The statement r.J(¢) = O(e), in view of the definition
(17), merely implies | 7S(¢) | < Meas e — 0, where M is a positive number independent
of e. Thus, by contracting the load region sufficiently, say toward 4, , while maintaining
the loading within the e-sphere in equilibrium, | 7.(¢) | can be made arbitrarily small. In
this process of contraction, however, the end of the bar which carries the point 4, ,
will eventually cease to lie within the contracting e-sphere so that the entire character

g, , for example, at @ has the singularity appropriate to a force-doublet the axis of which is para]lei
to the z;-axis.

26See (3], p. 245.

7'These examples refer to concentrated forces (see the next section of the present paper).

#Note that S here consists of the points Ax(n = 1,2, --- N). ~

»Modified for the case of concentrated forces. Co
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of the loading changes, that end being now free from loading. This example provides
additional evidence for the vagueness of the traditional statements of Saint-Venant’s
principle, quoted in the Introduction.

Hoff [17] pointed out important limitations inherent in certain conventional engi-
neering approximations which are usually based on an appeal to Saint-Venant’s principle.
These observations are consistent with the results established here. For Saint-Venant’s

Fia. 2,

principle is a statement about relative orders of magnitude and does not tell us anything
about the extent of the region within which a self-equilibrated system of tractions,
applied to a portion of the surface of an elastic body, “materially’’ influences the stress
distribution in the body.

In conclusion, it may be well to repeat v. Mises’ remark [4] to the effect that the
present theorem does not preclude the validity of a stronger Saint-Venant principle
for special classes of bodies, such as “thin” plates or shells and “long’’ cylinders.
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