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—NOTES—
A SUFFICIENT CONDITION FOR AN INFINITE DISCRETE SPECTRUM*

By C. R. PUTNAM (Purdue University)

1. In the differential equation

x" + f(t)x = 0, (1)

let / = /(t) denote a real-valued, continuous function on the half-line 0 ^ t < ».
Both necessary and sufficient conditions in order that the equation (1) be oscillatory,
so that every solution of (1) possesses an infinity of zeros on 0 t < =» clustering at
+ co t are known; see, for instance, [10], [5]. The present note will deal primarily with
the problem of obtaining a sufficient criterion in order that (1) be oscillatory, in the
particular case that f{t) satisfies the limit relation

/(<) —» 0, as t —* to. (2)

The following will be shown:

(I) If f(t) satisfies (2), then the differential equation (1) is oscillatory whenever the
inequality

limsup //limsup iS| limsup f f(t) dt + [ f(t) | (t — y)/(S — 7) \l+h dt J > j (3)
h—+0 \ S-» 00 L T-*co Js JO J' ^

holds for every fixed number 7 0.

Obviously, the inequality is satisfied in case the innermost "lim sup" is + 00. (It
should be pointed out here that if (2) holds and if lim r-^/o f(t)dt fails to exist either
as a finite limit or as — 00 f then (1) is surely oscillatory; [3], p. 389. Cf. also [11] and [2].)
It is noteworthy that the criterion furnished by (I) remains valid if the assumption
(2) is replaced by certain other conditions; cf. the remark at the end of section 2.

The result (I) will have an implication concerning the discrete spectrum of the
boundary value problem on 0 ^ t < 00 ([7]) determined by the differential equation

x" + (X + f(t))x = 0 (4)
and the boundary condition

x(0) cos a + x'(0) sm a = 0, 0 ^ a < r, (5)

in the particular case that (2) holds. For every fixed a, the relation (2) implies that
the half-line X ^ 0 belongs to the spectrum; [2], Moreover, only a discrete spectrum
(isolated eigenvalues) can exist for X < 0 and there exists a finite number of eigenvalues
X < 0, or an infinity of such eigenvalues clustering only at X = 0, according as (1) is
not or is oscillatory; [7], p. 252. Accordingly, (I) provides a sufficient condition that
(4) and (5), in the case (2), determine a boundary value problem with an infinity of
negative eigenvalues clustering at X = 0. (It should be pointed out that (4) may have
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a non-trivial solution x(^0) of class L2[0, °°) for a positive value \ even when (2) holds;
cf. the constructions of [8], pp. 394-395 and [9], pp. 268-269.)

In section 3 below, a specific application of the criterion (I) to the spectral problem
mentioned above will be made. The boundary value problem to be considered will be
of the type arising in the quantum mechanical treatment of the two particle problem.
In this case, there is a singularity in the coefficient function of the differential equation
at the origin but the nature of the problem remains essentially identical with that
considered in connection with (4) above; cf. [4], pp. 154, 163.

That the assertion of (I) can become false if the strict inequality > of (3) is relaxed
to =; can easily be shown by an example. In fact, if /(t) = Ct~2, where, say, 0 < t < m,
it is readily seen that (3) reduces to the inequality C > j. However, if C = so that /(()
becomes lt~2, then (1) possesses the non-oscillatory solution x = tl/2, for 0 < t < m.
(Needless to say, the criterion (I) actually requires the continuity of the function fit)
only for large values t and the fundamental interval 0 ^ t < ® may be replaced by
any half-line T ^ t < °°.)

2. The proof of (I) will depend upon an application of an oscillation criterion ob-
tained in [5]. (A somewhat similar application was made in [6] in the case that /(<) was
periodic.) It was shown in [5] that (1) is oscillatory if and only if, for every T ^ 0,
there exists on T g t < <*> a continuous function x = x{t) satisfying x(T) = 0 and
possessing a piecewise continuous derivative x'(t) such that each of the integrals

[ x2(t) dt, [ x'2(t) dt, and [ f(t)x2(t) dt
J T «/ T J T

is finite, while

fJ T
(x'2 - fx2) dt < 0. (6)

It will now be shown that relations (3) and (2) imply (6), and so, (I) will follow.
For every positive number T and for every number n > consider numbers T2 <

T3 < Tt such that T = Tx < T2 , and define the function x = x{t) on T, ^ < «= as
follows:

x(t) =

(t - 7\)\ for Tt S t^T2;

(T2 - TO", for T2 ^ t£ T3 ;

(T2 - T.nT, - T3)~\Tt - t), for T3 g t 1Z T< ;

.0, for T< ^ t < 00.

If T2 — Tx = A and T4 — T3 — B, direct calculation readily shows that the requirement
(6) reduces to

. r,
dtA [ ' fdt+ A1'2" f 'f(t- Tt)2

Jt, Jtx

+ AB~2 [T4 f(T4 - ty dt > n\2n - l)"1 + ABT\
J T ■
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Suppose that T2 (hence A) is determined and then, for an arbitrary positive number
t, choose B so as to satisfy AB_1 < e. Next choose T3 (hence Tt) so large that

.r.
dtAB~2 [ ' f(Tt - tf

Jt.
< e. (7)

That this can be done is clear from (2) and from the fact that \ Ti — t ^ B 2 1 when
T3 iS t ^ Tt ( = T3 -f B). It now follows that (6) is surely satisfied if

A fT' fdt+ A'~2" fT' f(t - 7\)2n dt > n\2n - l)"1 + 2«. (8)
Jt, J tx

Actually it will be shown that (8) holds for (certain) large values A, Tk (that is, for
certain A, Tk —> oo) as a consequence of (3).

Let L(S) be defined by

L(S) = limsup [ f(t) dt, (9)
T-* co J S

and for a fixed value T2 , choose T3 so large that

fT' fdt> L(T2) - t;\

It is clear that for a fixed value Tx , ATj"1 —* 1 as T2 —» <»} and so, for certain large A,
Tk, the relation (8) will hold if Tx is fixed and

T2L(T2) + T2 fT' fl(t - Tx)/A]2n dt > n\2n - l)"1 + 2*
J Tx

holds for certain large T2 . However, this last relation will certainly hold for certain
large T2 (T, fixed) if

lim sup I SL(S) + S fS f \(t - Tt)/(S - I7,) |2" dt > n\2n - l)"1 + 2e.
S —* oo L •'O J

(10)

Since e can be chosen arbitrarily small, the 2e appearing on the right side of (10) may
be deleted. If now h = 2n — 1, one sees that (6) holds for every T (= Tt = y) if the relation

h lim sup s\L(S) + ['S f(t) I (t - 7)/(S - y) |1+J rfil > (1 + h)2/4 (11)
S —»co L •'O J

holds for some h > 0 (where possibly h = h(y)) and y is an arbitrary non-negative number.
However, relations (3) and (9) clearly imply that (11), for every y ^ 0, is valid for some
positive h and thus the assertion (I) is proved.

Remark. The assumption (2) was used in order to obtain (7). It is clear though from
the proof given above that (3) will imply (6) if

AB'2 fT'+B + B - (f dt
J r>

/, / < o
<r = {

10, / > 0



1954] C. R. PUTNAM 487

can be obtained for A, B fixed and for (certain) large Ts . Thus, the criterion furnished
by (I) will be valid if, for instance, the restriction (2) is replaced by any one of the
three assumptions (i) f(t) Sj 0, or even (ii) f~(t) —* 0 as t —> °°, or

(iii) [ f~(t) dt
Jo

< oo ,

3. In order to obtain an application of (I), consider the radial portion of the separated
form of the quantum mechanical wave equation of the two particle problem, namely,

R" + c(X - V(r) - 1(1 + 1)/cr2)R = 0;

cf. [4], p. 150. Here, c, X and I are constants and the prime denotes differentiation with
respect to r. It will be assumed that F(r) —» 0 as r —» oo j cf. [4], p. 152. It is clear from
an earlier remark that, as far as concerns the application of (I), only the continuity of
the function V(r) for large r, say for 1 ^ r < <», is needed. (As is customary, it will
be assumed that the singularity of V(r) at r = 0 is of a suitably restricted type; cf.,
e.g., [4], pp. 152,163.) It follows from (I) and the calculation of section 1 that the equation

R" + c(- F(r) - 1(1 + 1 )/cr2)R = 0 (12)

is oscillatory if, for all 7^0,

limsup hilimsup £ limsup [ — cV(r) dr + f — cV(r) | (r — y)/(S — y) |I+'1 dr )
A-+ + 0 \ S-»co L r-»a> Js J\ J/

> i + 1(1 + 1). (13)

Thus, if the last inequality is satisfied, there exists an infinity of negative energy levels
clustering at X = 0. In the case of the hydrogen atom, V(r) = kr~2, where k < 0, so
that the bracketed portion of the left side of (13) is + °° and hence (12) is oscillatory
for all values I; cf., e.g., [4], pp. 157 ff. In many cases however, the potential V(r) appears
to be unknown (cf. [4], p. 156 and [1], pp. 30 ff.) and the relation (13) offers a property
of V(r) guaranteeing the existence of an infinite (negative) discrete spectrum.
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