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ON THE EXPANSION OF FUNCTIONS IN TERMS OF THEIR MOMENTS*

BY
H. S. GREEN AND H. MESSEL
University of Sydney

Summary. A general method is devised for the reconstruction of functions of a
continuous variable from their moments. An analogue is given for functions of a discrete
variable. An application is given to the solution of partial differential equations with a
given initial condition.

1. Introduction. Recently, in some work connected with the lateral spread of showers
of cosmic-ray particles in their passage through the atmosphere, the authors were faced
with the problem of finding the radial distribution function of the particles with respect
to the shower axis. This function was known to be the solution of a partial differential
equation, from which, however, only the moments of the function could be conveniently
determined. It was then necessary to devise a method for reconstructing the function
from its moments. From the physical nature of the problem considered by the authors,
it was known that such a function existed; however, situations could arise in which
even this knowledge was not available. Criteria for the existence and uniqueness of
distribution functions corresponding to a given set of moments having been the subject
of extensive study [1], and analytical procedures for the determination of the distribution
functions have been described. However, it has also been pointed out [2] that these
methods have little value in practice. The only method known to the authors which is
well adapted to application has been given by Spencer and Fano [3], but this was not of
sufficient generality for our purpose. We therefore developed a method of considerably
wider applicability.

The expansion of a function in terms of its moments is a problem which arises not
only in methematical physics, but also in many branches of statistics. In the hope that
the method may prove useful to workers in fields other than our own, we now give a
brief account of the theory in its most general form.

2. Expansions in terms of the é-function. The use of the é-function has been well
established in quantum mechanics [4] and pulse theory; however, the rigour of the
mathematical procedures in which it is used has sometimes been questioned [5], and we
therefore state at the outset the unambiguous meaning of an equation of the type

1@ = @) T ) 8@, O

where the superfix represents the number of differentiations of the é-function with
respect to the arbitrary variable x. The first k derivatives of the function a,(z) must

exist for z = 0, but w(z) may have any kind of singularity there. Then (1) will be held
equivalent to the assertion

q(x) = g(z)ax(z) )
*Received January 28, 1953.
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where ¢(z) is an arbitrary function regular at z = 0, and a and b are any positive numbers
less than the radius of convergence p of the power series

0@ = 3 PO/, ®
Let
1@ = 4@ for@); (9
then since
[ a@i@ dz = T a®© [ 2@ dz/i, )
one has, by comparison with (1) and (2),
J@) = 3 (=1 5°@/H, (®)
for = [ 2@ da. Q)

Thus, any function, integrable in the range —a < z < b can be expanded in this range
as a series of derivatives of the &-function, with coefficients which are proportional to
the moments (7) of the function f(z). This result is easily extended to functions of any
number of variables.

3. Expansions in orthogonal polynomials. The result (6) requires some elaboration
in order to provide a practical method for the determination of f(x) when the coefficients
fy of the series are known. The method which we shall adopt is to make a formal
expansion of 5*’(z) in series of orthogonal polynomials;* but first we obtain the ex-
pansion of the function f(z) which anticipates the result. Let

1@ = w@) X 1.5.@); ®)
where S,.(z) is a set of polynomials which will be defined presently; and if f(z) has
singularities at x = z, ,2,, --- , 2, , where |z, | < a, | 2, | <), let w(z) be a ‘‘weight-

function” with a singularities of the same type, so that f(z)/w(z) is regular for |z | < a,
| = | < b. The polynomials S,(z) are defined by

W0y W) ce Wn)
Wa Wy 0 W(n-1)
Sux) = | --- for n>1, (9)
Wn-1) W (n) T W(2n-1)
1 x . e "

*For the general theory of such polynomials, c.f. Szegd [6]. The cases of Legendre and Laguerre
polynomials are known [1].
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where Sy(z) = 1, and

b
e = [ w@st da. (10)
Then these polynlmials satisfy the orthogonality relations
b
| 9@ 8.@)8.) de = Moo, 1
where the normality constants are given by
N n = AuAn—l )
W (o) W, T Wn)
Wy W2y t Win+1)
A, = for n >0, (12)
W (ny Win+1) T W (2n)
A-l = 1.
There is obviously an expansion of z* of the form

k
= lZo&.zSz(x); (13)
hence, for values of 2 less than the radius of convergence p of the power series
@) /w(z) = ;wc" (14

which exceeds both-a and b, there will exist a convergent expansion of the type (8),
with coefficients given by

.fn = Z ¢k£k.n (15)

k=n

The coefficients f, are most readily obtained by multiplying (8) by S..(z), and inte-
grating from —a to b; thus:

Nafo = [ @S o

W0y W) cee Wn)
Wy W2 ce Win+1)
= ces for nZ]_’ (16)
W(n-1) W (ny T W(2n-1)
f(o) fm te )

Nofo = fwo -
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The function f(x) has then been expanded in a series of orthogonal polynomials, the
coefficients of which are linear combinations of its moments f, . It is necessary that
the quantities A, defined by (12) should be positive, if a monotonic function f(z) exists.
The conditions for this have been discussed in detail by Shohat and Tomarkin [1],
Chap. 1.

The result (8) may also be deduced from (1) by expanding §*’(z) in terms of the
orthogonal polynomials S,(z), thus:

5P = w@(= D'k S Avw Su&)/N, (17)

where A;(, is the minor of w,,,, in the last row or column of the determinant A, . Sub-
stituting (17) into (1), and interchanging the order of the summations, one then obtains
(8), which is therefore one way of interpreting the formula (1).

This procedure is easily adapted to distribution functions F(n) of a discrete variable n.
Here we consider expansions of the type

Fin) = Wn) E F.S.(n) (18)
r=0
where
W Wu) i W(r)
S.(n) = for r2>1, (19
Wb W b W -1y
1 n P n’
Se(m) = 1,
and
W = Zo Wmn'. (20)

It is necessary for the existence of the W, that W(n) should decrease at least expo-
nentially for large values of n.
The determinants S,(n) satisfy the orthogonality relations

3 W) S S.) = Neda.r @1

where the N, are defined by equations precisely analogous to (12)s
The coefficients F, in (18) are determined by the relation

> SmF@) = NF, )

n=0
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assuming the convergence of the series. Substituting for S,(n) from (19), this gives

W(O) T W(a)
NJF, = for g=>1, (23)
W(q—l) W(za—l)
F o . F
N oF 0 = F )
where
Fo = Zo Fm)n® (24)

are the moments of the distribution, assumed to be finite.

In order to ensure that the series (18) should converge, it is necessary to impose
rather stringent conditions on W(n), depending on the nature of the function F(n).
In practice, if the weight-function W(n) is chosen to approximate fairly closely to
F(n), the series is either convergent, or else is asymptotic and equally suitable for com-
putational purposes.

If one has no previous knowledge of the nature of the function f(z) or F(n), but is
given only the moments f, or F,, respectively, defined for the range 0 = a < z (orn) <
b £ =, the weight-function should be chosen in the following manner. The asymptotic
behaviour of f, for large k is compared with that of the moments of a weight-function
of the form :

w(x) = exp(—Bz*) (B> 0,4 >0), (25)
namely

way, = (AB** V470 {(k + 1)/A} ~ (k/Bed)** for b=o, a=0 (26
Wy ~ b e ™ /(k 4+ 1), bfinite, a=0

A numerical comparison of these expressions with the known values enables one to
choose a proper value of 4, and thus to determine the nature of the singularity of f(x),
if any, at the origin. Any other singularity will be revealed by a failure of the series (8)
to converge for large values of z; and in difficult cases it may be necessary to change
the origin. A similar procedure may be followed to identify the ‘singularities” for a
discrete variable.

The value of B in (25) should be determined as follows. Assuming that numerical
values are available for the first m + 1 moments, the series (8) is terminated at the
mth term, and B chosen so as to give correctly the value of the (m -4 1)th moment,
thus:

Wo) T Wn)
fomsy = Zo fa . (27)
" Wn-1) s W (2n-1)
w(m+1) b w(m+n+l)
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This procedure for the determination of B requires only the solution of an algebraie
equation at the (m 4+ 1)th degree. If the weight-function is well chosen, it is our ex-
perience that a good approximation to f(x) will result from the use of the first few
moments only.

4. Solution of differential equations. We shall demonstrate the utility of the method
described above in the solution of partial differential equations with a special type of
boundary condition.

Consider the general equation

0.f(t, 2) = 0.1(, ), (28)

where O, and O, are operators of the form

1 9
Ol = p(t, x) a Q(t, 13)
0.= % ak(x) (29)
k=0
with the initial condition
J(0, ) = () (30
By an iteration procedure a solution can be found of the form
1t 2 = Z i, 7) 31)
where
] = 8"
— {g(t, D¥ni(t,z)} = p(t, @) 2 au(@) — Talt, 2). (32)
at k=0 ox

One may choose ¥,(t, ) = 0; then ¢(¢, z) ¢, (¢, z) must be independent of ¢ and, according
to (30),

.(t, ) = ¢(0, 2) 8(x)/q(t, 2) (33)

Furthermore,
¥t D) = (a6 97 [ 5D ) 2 (00,2 s@/ah D), @Y

ete.
The solution of (28) obtained in this manner is of the form (1), and can be reduced

to the form (6), by use of the general formula

. EEN— -

(x) (1) (k=1) -
ay(x) 87 (x) = Z « N(k — l)' 0) s (x). (35)
Thus, the moments of the function f(¢, ) with respect to the variable z are obtained
immediately as functions of ¢; and, using the procedure described in the previous section
for the reconstruction of a function from its moments, an explicit solution is obtained
of the differential equation which satisfied the boundary condition (30).
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The solution f’(¢, z¥.f,28) for the initial condition

1700, 2) = \z) (36)
is then easily obtained in the form

P2 = [ 1t — @) a'. (37)
An almost identical method of solution may be devised for equations of the type

O f(t, 2y, +++ ,Zm) = Oy reveznfy 20y -+, T0)

which, in the application to cosmic ray shower theory, we have actually [7] succeeded
in solving.
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