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PULSED SURFACE HEATING OF A SEMI-INFINITE SOLID*

By J. C. JAEGER (Australian National University)

1. Introduction. In many practical systems heat is supplied to the surface of a solid

in regular rectangular pulses, so that the flux of heat F at the surface at time t will be

F = F0 , nT < t < nT + Tt

>n = 0, 1, 2, • • • (1)

F = 0, nT + Tx < t < (n + 1 )T,)

where F0 , T, and rl\ are constants and the solid is supposed to be at zero temperature

when t — 0. Such problems occur, for example, in "on-off" heating, in heat generation

by friction over portion of the surface of a rotating cylinder ', in the rotating anode

X-ray tube2, in the heating of machine guns, in the heating of the anode of a magnetron,

and so on.

It is usually desired to know the surface temperature after steady conditions have

been attained, and, in particular, the temperature at the end of a heating interval.

Fourier series are not very suitable for the treatment of such problems (since their

convergence is very slow at the most interesting values of the time) and alternative

methods have been given by Weber3 and Oosterkamp2, but the most powerful and widely

applicable method seems to be that of the Laplace transformation4 in a form which is

essentially equivalent to the steady-state operational calculus of Waidelich6.

To illustrate the method the most important case, that of the semi-infinite solid

heated over the whole of its surface, is discussed in some detail in §2: the results of this

section are frequently useful as approximations for the case of a finite solid similarly

heated.

The more difficult problem of the semi-infinite solid with heat supplied over a circular

area of its surface is of interest in connection with rotating anode X-ray tubes and is

discussed in §3. Results for pulsed point and line sources in infinite medium are given

in §4.

2. The semi-infinite solid heated over the whole of its surface.

The semi-infinite solid x > 0, of conductivity k and diffusivity a, initially at zero tem-

perature, is heated over the whole of the surface x = 0 by the flux (1). It is required to find

its surface temperature for large values of the time.

If v is the temperature in the solid we have to solve

= *>0' *>0' ®

with

v = 0, when t = 0, x > 0, (3)

-k~ = F, x = 0, t> 0, (4)
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and v finite as x —>oo; where F is given by (1). Writing

v* = f e~"v dt (5)
J 0

for the Laplace transform of v, with a similar notation for that of F, etc., we have from

(1)

F* = ~ e ^ (6)

s( 1 - e-T)

and, by the usual Laplace transformation procedure4

- _ Fqq;1/2(1 - e-'T>)e~
(7)

ks3/2( 1 - e-T)

This gives for the surface temperature v0 at x = 0,

Vo = lf I?)''2' 0 < 1 < T> ' (8)

»° = UW2 ~ (t - TO"2}, Ti < t < T, (9)

and so on. Also, the inversion theorem for the Laplace transformation gives

F0aU2 r+<" jT - Te-T> -Tt + Txe~'r ,

*-s&t \ rrp-' + T' *■ m
for all values of t, where 7 is a positive constant. The integrand of (10) has a branch

point at s = 0 and simple poles at

s = ±2niri/T, n = 1, 2, - . (11)

When the integral (10) is evaluated by contour integration in the usual way, the

residues at these poles give rise to a series of terms with period T, and the sum of this

series, which we shall denote by vP , is the required steady periodic term. The final result

is

Vo
2F0T, (at\n , 2F0a1/2 T e~"'(T - Teu'T' - Tx + Txe"T) du

~ ~kT~ W + " ~irkf~ J0 u*(i _ e'l"T) ' {U)

where the first term of (12) comes from the last term in the brace in (10), and the integral

in (12) comes from the branch point in the first term in the brace in (10).

For large values of the time the integral in (12) is negligible, and v0 is given by the

steady periodic part vP superposed on the first term of (12) which corresponds to steady

heating by the average flux FQT^/T commencing at t — 0.

For small values of t the result (12) must agree with (8) for 0 < t < Tx , and with

(9) for Tj < t < T, and this gives an integral expression for vP over the whole of a period.

Writing

a = TJT, Q = F0T, , (13)
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the value of vP at time bT after the beginning of a period is

vP = ~ fe)'/2{(l - «)&V2 ~ b)}, 0 < b < a (14)

Vp = E fe)V2f(1 " a)hU2 ~{b~ a)U2 ~ 7r"1/2/(a' 6)!' a < b < 1; (15)

where

b) _ r ^'■-^■"• + ,,1^ a6)
•'o £ (1 — e )

These integrals are easy to evaluate numerically. The values of a, the ratio of the

heating time Tx to the period T, vary greatly in practice. For on-off switching and

frictional heating of a rotating cylinder they may be relatively large, but in other systems,

such as machine guns or the anodes of X-ray tubes, they are usually of the order of

0.02 or less. Values of vP at time of bT after the beginning of a period are shown in Curves

I and II of Fig. 1 for a — 0.5 and 0.1, respectively, for the same quantity of heat

Q emitted per unit area per cycle.

Curve III of Fig. 1 corresponds to the case a —> 0, that is, to the quantity of heat

Q per unit area being supplied instantaneously at the beginning of each period so that

(1) is replaced by

f = - nT), (17)
n = 0

fi >

where S(t) is the Dirac delta function.

In this 'case (14) and (15) are replaced by

- £ /; <>s)

•* n nr

Fig. 1. Periodic temperature oscillations of the surface of a semi-infinite solid when the same quantity

of heat is liberated over half the cycle (Curve I), over 1/10 of the cycle (Curve II), and instantaneously

(Curve III).
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The most important quantities in practice are the temperatures at the beginning

and end of a heating interval, obtained by taking 6 = 0 and b = a, respectively in (14).

The variation of these with the parameter a = TJT for the same total quantity of heat

Q supplied per unit area per cycle is shown in Fig. 2, Curves I and II.

Fig. 2. Periodic Temperature at the beginning (Curve I) and end (Curve II) of a heating interval.

Finally it may be remarked that there is no difficulty in writing down expressions

for the temperature at depth x. For example, for the surface flux (17) the temperature

at depth x at a time t after the beginning of heating which is so long that the starting

transient has disappeared is

2Q(at)W2 .. x ,10s
~kf~~ierfc + - (19)

where the value of the periodic part at time bT after the beginning of a heating interval is

QaW2 2QaW2bW2 . „ c

Vp ~ k(irbT)w'e kTw2 161 2b1/2

2Qa/2 r e~H' [1 - (1 + fV*'] cos egf e [1 ~ (1 + i )e ] cosc* com
1„rpl/2 / 2/< -f»\ ^ ^

vkl Jo g2(l — e £)

where

ierfc x — I erfc g d£,
J x

c — x(aT)~\ and a and Q are defined in (13).

It follows from (19) that, for large values of the time t, the temperature is accurately

the sum of the periodic oscillation vP whose mean value is zero and a term corresponding

to heating for time t by the constant flux Q/T, the mean value of the applied flux. The



136 NOTES [Vol. XI, No. 1

same remark applies to all the other cases discussed. There seems to be no justification

for the suggestion of Comenetz6 that the temperature behaves on the average as if the

constant flux Q/T had been supplied for time t + %T.

3. The semi-infinite solid heated over a circular area.

Suppose the semi-infinite solid is heated by flux (1) applied over a circle of radius R

in its surface, there being no loss of heat from the remainder of the surface. When steady

conditions have been attained, the temperature at the centre of the circle at time bT

after the beginning of a period is found to be

f + , (21)
where, now, the steady periodic part vP is given by

Qa/2 J2bl/2 ,, _cV4tx , c , c

~ AT1/2 \air1/2 (1 ~ e } + a CTfc 2b1/2 °

+ — [ e H *6 " "* ~ 6 ^ ^ j ~ C0SC^ ^1, 0 < b < a, (22)
tci J o {'(1 — e"f) J

where

Q = F0T, , a = TJT, c = R/(aT)1/2. (23)

As before, the most interesting quantity is the maximum value of vP which is attained

when b — a. Values of this, plotted against Tl/T, are shown in Fig. 3 for various values

of the parameter c. For c < 0.2 the integrals in (22) do not make an important contribu-

tion, while for c = 1 they are already close to the limiting case c —>co of Fig. 2, Curve II.

■«

Or

J—

0 0-Z 0*4- 0-6
T./T

Fig. 3. Values of the periodic temperature at the end of a heating interval for heat supply over a circle

of radius R. The numbers on the curves are the values of R(aT) K

"Quart. App. Math., 5, 503 (1947).
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4. Pulsed point and line sources in an infinite medium.

For the point source, suppose that heat is supplied at the origin at the rate of q units

per unit time in the time intervals

nT < t < nT + 2\ , n = 0, 1, 2, • • • (24)

no heat being supplied at other times. Then, when steady conditions have been attained,

the temperature at distance r from the origin at a time bT after the beginning of a heating

period is, for 0 < b < a,

^ + V*> <25)

where the periodic part vP is

q f r C , 2 r^V'^'-^lsinQj
vp = ierfc 7777/2 — a H— /  - d£>,

4*kr{ 2b tt J0 £(!_<,-«*) T (26)

and

a = TJT, C = r(aT)'W2. (27)

This is the limiting case of the problem of §3.

For the line source, suppose that heat is supplied along an infinite line at the rate q

units per unit length per unit time during the time intervals (24), no heat being supplied

at other times. Then, for large values of the time the temperature at distance r from

the line is, for 0 < b < a,

(28)

where the periodic part vP is

<7(1 - a) J C2\ q re-*vUCQ\0.-a)ev +a\# , ,
Vp ~ !«k~E\-Tb) ~ 2^ Jo |(l - e~tm) ' ( }

and a and C are defined in (27), Ei is the exponential integral, and J0 the Bessel function

of the first kind of order zero.
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Tensor analysis for physicists. By J. A. Schouten. The Clarendon Press, Oxford, 1951.

x + 275 pp. 50s.

The first five chapters of this extremely well written book are devoted to an exposition of tensor

analysis and Riemannian geometry. The author uses his well known expository skill to give a clear

geometric interpretation to the various quantities discussed. The last five chapters are devoted to appli-

cations of this material to various physical problems. The two groups of chapters are separated by a

summary of the salient points of the theory described in the first part of the book. This section should

prove to be very useful.

Chapters I and II deal with the algebra of affinors (tensors) and contain a detailed discussion of

p-vectors and p-vector densities (anti-symmetric tensors and tensor densities with p indices). The

Identification of various affinors obtained by restricting the group of the space is made extremely clear.


