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CONNECTION FORMULAS BETWEEN THE SOLUTIONS OF

MATHIEU'S EQUATION*

BY

GREGORY H. WANNIER

Bell Telephone Laboratories, Murray Hill, New Jersey

Abstract. The problem of connecting the various types of solutions of Mathieu's

equation is solved by the introduction of a new parameter 3> which is a function of the

the two equation parameters a and q. This quantity $ is introduced and enclosed be-

tween two very close analytic limits in section 2. In sections 3, 4, 5 precise definitions

are given and information is collected for the three main types of functions which are

to be connected. Section 6 contains the connection formulas. Section 7 reviews the

status of knowledge achieved. Section 8 is an appendix on integral equations which

are more general than those developed earlier in the text, but which appear to be of

no use for the main purpose of this paper.

1. Introduction. A variety of different types of solutions have been written down for

the Mathieu differential equation

+ (a — 2q cos 2x)J(x) = 0 (1)

a general solution of which we shall call me x. The special solutions proposed stress

different qualitative features of this general solution and suggest themselves in different

types of applications. By general principles, there must exist a connection formula

between any three such solutions. It is the purpose of this paper to write down these

connection formulas for some of the more important solutions of equation (1).

In carrying out this program we shall assume q real, and once it is assumed real it

may be assumed positive because the transformation

T i
x 2

will reverse the sign of q. We shall express this sometime by writing

q = k\ (2)

The parameter a will also be assumed real. The treatment is particularly designed for

positive a; this becomes important in the discussion of the next section.

2. On the function ke y. Equation (1) contains three distinct real equations, one of

which is (1) itself. The second is obtained by setting

x ■ iz

which yields

d2f
dz

— (a — 2q cosh 2z)f — 0 (3)

*Received March 25, 1952.
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and the third by setting

which yields

71" .
x - g + iy

- (a + 2q cosh 2y)f = 0. (4)

The study of equation (4) for / as a function of the real variable y will occupy the rest

of this section.

Whenever j y | is large equation (4) can be approximated closely by

^ - (a + qe^)f = 0 (5)

which admits as solutions the modified Bessel Functions

/i(Sf) = *../.(* e1"), My) = (6)

The solutions (6) give the asymptotic character of the solutions of (4); they show us

that there must be one solution vanishing as Ka,/t(k e") for positive y. We shall call it

ke y, we shall normalize it by the prescription that

key ~ —777^ f°r y» 0. (7)
(fc e")

We now assume that in equation (4), we have the inequality

a 2q > 0. (8)

The solutions of (4) are then always curved away from the axis. This means for ke y

that it stays positive throughout, and that it cannot vanish exponentially for large

negative y. Hence we must be able to write

, exp [fee1"' + 4>(a, &)] r ^ ,n\
key ~ —— , , ' for y « 0 (9)

{k e )

with $ (a, k) real.

We shall now show that under the restriction (8), $(a, k) is a smoothly varying

function of a and k, that is, it does not partake in the oscillatory character of the param-

eter /3 introduced by Floquet's theorem. We shall establish this fact in the remainder

of this section by enclosing $ between narrow limits, neither one of which shows any

oscillation. These limits are reproduced in Figs. 1 and 2; they furnish incidentally a

close numerical approximation to $ when desired. The structural discussion of Mathieu's

equation will then be resumed in section 3.

We start out with the approximate value of $ which is obtained by application of

the Jeffreys' or WKB method1 to equation (4). We set

key = A{y)e~SM (10)

JH. Jeffreys. Proc. Lond. Math. Soc. 23, 428 (1924).
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FIG. 1 MAP OF THE LOWER BOUND 0O OF <£>(a,q). THIS
LOWER BOUND RESULTS FROM THE JEFFREYS APPROXIMATION.

FIG. 2 UPPER BOUND <f>\ OF 0(a,q). THE BOUND IS NOT PROVED
TO THE LEFT OF THE WAVY LINE, BUT PROBABLY HOLDS THERE
ALSO.
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and set

(^1/) = a + cosh 2y. (11)

This yields for A the equation

cfA 0dAdS ,d2S_„ ,19x
J 2 & T 7 •'"1,2 — "• \*-"J
ay dy dy dy

The standard solution is obtained by neglecting the first term in (12). We find in this case

, _ exp l^o - fp (a + 2k2 cosh 2rj)1/2 dy]

V (a + 2k2 cosh 2y)1/4 ' ( )

The term enters into the exponent in order to satisfy the asymptotic requirement

(7); it obeys the relation

| $0 = lim f (a + 2k2 cosh 2i?),/2 dy — 2&sinh j. (14)

Equation (14) then represents the Jeffreys approximation to $ as defined in (9):

$ = • (15)

$0 is easily evaluated in terms of complete elliptic integrals; we find

for a ^ 2k2

. _ „ a-2k2

0 (a + 2kT

for a 2k"

7a - 2k2\U2~]

_\a + 2k2) J'
(16a)

(16b)

The two expressions (16) do not indicate a break at a — 2k2, for they are analytic con-

tinuations of each other.

The approximation (16) to $ is shown in Fig. 1; we shall now prove for it that the

approximate identity (15) is an inequality, that is, that

$ > • (17)

To prove this let us write equation (12) in the form

.2d2S , _ . dAdS . d2 A
A -j-2 + 24t"3 A -j~2 = 0.dy dy dy dy

Subtracting (dA/dy)2 on either side we get

*(a'¥-a¥)--(¥-y<0.
dy \ dy dy / \dy /

Integrating this inequality between — °° and + °°, and observing that A (dA/dy)

vanishes at either end, we get

(A*f) -U'f) <0.\ dy/v^+oo \ dy/v-.-a
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If the Jeffreys' approximation were correct this difference would be zero; actually, the

formulas (7), (9), (10), (11) and (14) yield

, / , \ exp | |$n! /to \

^4(+») ~ (ds/dy)1'*' (18a)

a (_ oo) ~ oxp t-H. + *1 n
A{ {dS/dy)W2 ■ (18b)

These expressions reduce the inequality to

$0 , -'J'o+24'
e < e

which is equivalent to (17).

In order to gain an upper limit for $, we transform equation (12) by the substitution

-j = B (19)

which yields the equation

and hence the inequality

A dy

IS dS _ dB 2
7 2 1 *£) j — , -|~ ,dy dy dy

dy dy dy

Multiplying with e 23 and integrating we get from this

e~"B + [ e~2S ̂4dy > 0.
J» dy

Returning to .4 by (19) we get

1 dA 2S r _2S d2SA^i + ' J. e W V>

Integrating the second term by parts we get this in the form

d
ln

dy MiT +h-r
With the help of the equations (18) this is finally transformed into

4 - i /.r*» r »
The inequality (20) is the desired upper limit and could be evaluated by numerical

methods. However, we shall proceed instead to majorize the double integral by explicit

analytic expressions.
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In discussing (20) we observe first that the expression in the integrand

d_ Id2S/d,Ti2\ _ 4q(a cosh 2t? + 2q)

di7 \ dS/drj ) (a + 2q cosh 2iif

is positive everywhere and vanishes strongly at either infinity; the inner integral is

therefore majorized by replacing e~2SW by its largest value e~2S(v\ This procedure is

of no use at this stage as it gives a divergent result. However, if we integrate the outer

integral by parts according to the scheme

dy~ /"<«*"■') mm
then we verify by this method that the integrated out part vanishes. The expression

(20) then takes the form

* * ^ 1 f+°° 1 d (d2S/dy2\ ,

0 4 i_„ dS/dy dy \ dS/dy ) y

1 r~ d2S/dy2 ,SM f- -M,„ d (d2S/dv2\

+ li.„(^we dy Jv e dv\dS/dv)dv-

The first integral is positive, as can be seen by another integration by parts:

„ 1 ra d2S/dy2 ,

*-*-<41.. wmdy
(22)

. i [+™ d2s/dy2 , r _2S(„ d (d2S/dv2\

+ 4 L (dSm2* dV J. 6 d~v \dS7dv) dv-

The sign of the second integral is not immediately obvious, because the integrand

changes its sign with d2S/dy2. An easy way to obtain an upper limit of $ is to replace

the integrand by 0 in the range in which it is negative; we find thus

_ _ ,ir (d2 s/dy2)2 , 1 r d2s/dy2 r d (d2s/dv2\ ,

~(dS7dyf-dy + ll0 jdsjdyf6 dyle dvVdSjd^)^-

Having now the integrand positive throughout, we can majorize it by the trick dis-

cussed above of replacing the exponent S(i]) by S(y). Observing that

,. d2S/dv2 .

we get

$ - $0 <
1 f*- d2S/dy2 1 f- d2S/dy2 [~ _ d2S/dy21
4 J_. (dS/dy)3 ay + 4 Jo (dS/dy)2 L dS/dy jay

.If (d2S/dy2)2
4 Jo (dS/dy)3 J +

(d S/dy2)2 , , 1 1

4 (dS/dy)„.o '
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By the observation that

<
dS
dydy2

the first term is seen to be smaller than the second. We get thus with (11) the inequality

$ < $2 (23)

where

I

2 (a + 2 g)1$2 = <*>o + ^7r-r-S3T72. (24)

The upper limit (24) is shown in Fig. 3. This figure makes the limit appear rather close,

FIG. 3 UPPER BOUND <f>z OF 0(a,q). THIS BOUND IS
EASILY PROVED FOR ALL VALUES OF a AND q.

but a detailed study for small a and q shows deviations. We shall now establish a tighter

limit by showing that the second integral in (22) is always negative and can be dis-

carded, provided we introduce the restriction

a < 5q. (25)

Introduce the abbreviation
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Because of (21), this function is positive everywhere and vanishes at ± °°. It is seen

to obey the differential equation

dy ~ 2 dy {E ~ £"-'

where

_ 1 ± (d2S/dy2\

lim 2(dS/dy) dy \ dS/dy I'

In an E,y-plane as shown in Fig. 4, the differential equation above defines a slope at

FIG.4 DIAGRAM FOR THE STUDY OF THE AUXILIARY FUNCTION E(y).

THE SHORT LINES INDICATE SLOPES, THE SOLID CURVE CONNECTS

POINTS OF ZERO SLOPE. THE CURVE E (y) IS SHOWN DASHED. BY
CONSTRUCTION, ITS VALUE FOR A POSITIVE y IS SMALLER THAN

IT IS FOR -y.

at every point. The curve E — EUm divides this plane in two parts. Above this curve,

the slopes are positive, below negative. The curve E = EUm is always crossed with

zero slope. The inequality (25) is needed at this point because if it is satisfied then we

find from (21) that Elim has a slope whose sign is opposite to that of y. When (25) does

not hold then E develops two humps as shown in Fig. 5. In the case of Fig. 4, E starts

out by being 0 for + «>, rises for positive decreasing values of y, but must stay below

the line E = Elim because of the slope requirement; thus E still rises as y becomes

negative. At some negative y, E reaches its maximum as it crosses the line E — Eum ;

then this same slope requirement forces E to stay above the latter curve while going

to zero. The result of this behavior is that we have for all y

0 < E(-\y |) < E(+\ y |).

The second integral in (22) now takes the form

d2S/dy2I f
4 ./_« (dS/dyfE(y)dy

or, for symmetry reasons

d2S/dy2

ii: (dS/dy)' !E'"> - E[~J)] dj-
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This last expression is negative because the curly bracket and d2S/dy2 have opposite

sign, and thus the second integral in (22) is proved to be negative.

The proof given breaks down if the inequality (25) is reversed. The reason for this

is shown on Fig. 5; as soon as El ia develops a minimum at y = 0 instead of a maximum

FIG.5 DIAGRAM ANALOGOUS TO FIG.4 FOR THE CASE WHEN

INEQUALITY (24) IS REVERSED. THE FUNCTION E(y) IS SHOWN
IN DASHED OUTLINE. ITS MODE OF CONSTRUCTION NO LONGER

IMPLIES THAT E (l«J I) g E(-|yl).

the method''of constructing E outlined above may give E a positive slope for small | y |.

Thus the needed inequality does not hold everywhere. Nevertheless it still does hold

in fthe greater part of the interval. Numerical checks actually indicate that the second

integral in (22) is always negative.

We have thus found, at least under the restriction (25), and probably everywhere,

that

$ < (26)
where

or explicitly

for a > 2k3

. 1 r° (d2S/dy2)2 ,

= + 4 L 0dS/dy)3 dy'

(27a)

, ■ (n a -2k2 a \ [7a - 2^V/2"I

^ ~ \ (a + 2k2)l/2 ~ 3(a + 2k2)3/2)Vl\a + 2k2) J

, 1 1 J (a ~ 2fc2V/21
+ 3 (a + 2k2)1/2 L\a + 2k2) ]'

for a iS 2k2

(2 k2-a k \ U2k2-ay/2l

*>-{- k 3(2A-2 + a)/ L 2k J
(27b)

/2fc2 — a a \ f"(2fc2 - a)'/21

+ \ k 6fc(2A:2 + a)/ L 2k J'
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This upper limit is shown in Fig. 2, together with the line (25) above which the theorem

(26) has not been proved. These established limits determine fairly closely the behavior

of f>(a, k2).

It is possible without difficulty to come closer to the numerical value of $ than Figs.

1 and 2 do. For this purpose, equation (12), which is linear in A, may be solved in suc-

cessive approximations beginning with

ndA0dS . . cfS-n
2 dy dy+ Ao dy2

which yields (13); successive additive corrections A1 , A2 , A3 , • • • are then obtained

from the recursion system

d?S _ d2An

dy dy + " dy2 dy2 '

If this calculation is carried out up to Ai , and if we take the corrected A in the form

Ao exp A^/Afy rather than in the more obvious form A0 + Al , then a corrected <i> results

which is exactly the arithmetic mean of the two limits $0 and :

$ = !($o + *,)■ (28)

Thus a good approximation to the value of <£ is obtained by taking the arithmetic mean

of the readings on Fig. 1 and Fig. 2.

3. The Lindemann-Stieltjes Functions. The following three sections define and dis-

cuss the solutions of (1) between which connection formulas are to be established. These

discussions contain a good deal of information which is already available but which has

to be combined with the new material to yield the desired results.

The Lindemann-Stieltjes functions2 are based on the symmetry of the equation (1)

about the points x = 0 and x — ir/2 which are regular points of the equation. There

must thus exist an even and an odd power series solution about either one of these

points. We introduce the following definitions

I. ce (x; a, q) shall be the even function about x = 0; its value at x = 0 shall be 1.

II. se x shall be the odd function about x = 0; its derivative at x = 0 shall be 1.

III. de x shall be the even function about x = x/2; its value there shall be 1.

IV. te x shall be the odd function about x = 7r/2; its derivative there shall be — 1.

ce and se always form a linearly independent pair, as do de and te. Whenever the periodic

Mathieu functions cenx or senx exist they are respectively identical with the generalized

functions ce x and se x defined here. Similarly, ce2„ or se2„+i , when existing, are identical

with de x, ce2n+, or se2„ with te x. The simplest realization of these functions is by the

power series method:

ce x has a series in even powers of sin x.

sex " " " in odd " " "

tex " " " "odd

!E. T. Wliittaker and G. N. Watson. A course of modern analysis. Cambridge University Press,

Fourth Edition, Section 19.5.
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The coefficients are obtained directly from (1) through term by term recursion with

the first coefficient equal 1. However, the radius of convergence of these series is only 1,

and this excludes the possibility of getting connection formulas by this procedure.

As these functions are constructed relatively easily from others not having their

symmetry we will not investigate their structure further, but get it indirectly from

the study of the other types.
4. The Mathieu analogues to the Hankel functions. We will now use the function

ke y of section 2 as an auxiliary function to define solutions of (1) having given asymptotic

character. We define four such functions, namely he(l)x, he(2'x, he's>x, heU)x, by the

supplementary prescriptions

hew(^ +iyj = key, (29)

/iet2>(-| + iy^j = key, (30)

he ' iy) = key, (31)

<4>(i - iy) = key, (32)

y being taken as real initially. We now drop this restriction and continue the functions

outside their defining lines. As equation (1) is free of singularities for finite x, equations

(29)-(32) hold then everywhere and the four functions he(,)x are related to each other

by symmetry operations of equation (1).

The argument used to establish (6) can be repeated along any line parallel to the

imaginary axis. As soon as we are sufficiently far away from the real axis, the general

solution me x will behave as

exp [±2ik cos x]

[2k cos x]1

tJAu yzszAtn, uus Jb\ /oox
me x ~ —r07^ -.1/2—. \6o)

However, a particular asymptotic form

1
[2k cos x]

72 (A exp [2ik cos x] + B exp [—2ik cos x])

can define a given function only within a strip of limited width parallel to the imaginary

axis. One way to see this is by observing that the above expression is formally periodic

in x with period 4r, while by Floquet's theorem equation (1) has generally no such

solution.
In order to obtain this range we start out by proving the integral relation

r exp [ — 2k sinh y cos u]me u du = A ke y (34)

where me u is an arbitrary solution of (1), ke y the special solution of (4) defined by
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(7), and A is a number whose value depends on the choice of me u. As integrals of the

type (34) have been discussed in the literature3 we need not dwell upon the formal

steps necessary to prove (34); we have only to find out for what range of y this particular

combination of limits and functions is chosen correctly. From the asymptotic formula

(33), it follows that the integral exists as long as y is real and not negative. However,

in the formal steps necessary to prove that the integral obeys equation (4), factors such

as cosh y- cos u appear which demand that the exponential produce convergence; hence

the integral (34) defines some solution of (4) only as long as y > 0. Our next observation

is that the solution is always the same regardless of the choice of me u. This is so because,

for symmetry reasons, we have that

I" exp [ — 2k sinh y cos u]se u dv = 0.

Thus, only one linearly independent solution of (1) is left in (34), producing always the

same solution of (4) on the right hand side. That this function is just ke y is seen by

evaluating (34) for large y by the saddle point method. The saddle point is at the origin,

which permits us to write

exp [—2k sinh y cos i»j ~ exp [—2k sinh y(l + %v2)].

Hence

+ t'oo

exp [ — 2k sinh y cos u]me u duL
.%+co

me(0) exp [ — 2k sinh y] / exp [—k v2 sinh y] dv

1/2 exp [ — 2k sinh y]

(k sinh yf'2
= zV1/2 me{0)

This asymptotic behavior is the same as the one of the definition (7) and hence equation

(34) is proved for positive y.

We now use equation (34) to continue the function ke y analytically outside this

original range of definition. We start out by permitting values of y slightly off the positive

real axis. As long as this deviation x is less than ir/2 this goes without difficulty; for the

convergence producing factor in (34) is changed from its previous value to

exp [ — 2k sinh y cos x cos u]

which will produce convergence as long as cos x > 0 and sinh y > 0. Using the definition

(29) we arrive thus at the equation

/:
exp [ — 2ik cos x cos u]me u du = A heC1 x (35a)

which holds as long as

Six) > 0, (35b)

0 < <R(x) < tr. (35c)

SN .W. McLachlan. Theory and Application of Mathieu Functions. Clarendon Press, 1947, Chapter X.
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This range of definition can be extended further if we allow the path of integration

to be deformed. The imaginary axis along which the above integral is running is one

of a series of valleys along which it could be taken to produce a convergent result. The

other valleys are separated from this one by distances 2ir, 4r, etc., as shown in Fig. 6.

These valleys have a width ir, as shown by (35c); they are separated by ridges of the

same width for which the integral diverges. Now as 6i(x) changes the valleys of exp

[—2ik cos x cos u\ = X(x, u) shift. Set x —> x + iy, u —■► u + iv then we get for the real

part of the exponent in X(x, u)

exp [ — 2k (cos x cosh y sin it sinh v + sin x sinh y cos u cosh v)]

FIG. 6 PERSPECTIVE DRAWING IN THE U-PLANE SHOWING THE
ABSOLUTE VALUE OF THE INTEGRAND AND THE PATH OF INTEGRATION

FOR THE INTEGRAL (35). THE FACTOR ME U IS NOT INCLUDED AND
X MUST LIE ON THE WAVY LINE NOT FAR FROM THE REAL AXIS

which, for v positive and large, becomes approximately

exp [ — ke° (cos x cosh y sin u + sin x sinh y cos w)].

Clearly, if y is also large, the exponent contains sin {x + u) which is kept at its maximum

value by setting

x + u = ?. (36a)

If y is not large then the bottom of the valley is given by

tanh y tan x tan u = 1. (36b)

The movement of a; as a function of u does not differ essentially between (36a) and

(36b). As Si(x) decreases from 7r/2, fll(w) increases by an amount which is essentially
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equal to this decrease. The movement becomes gradually more jerky as y becomes

smaller and ceases to function for y = 0. Similarly for v negative and large we find

for y large

x — u = (37a)

and for general y

tanh y tan x tan u = — 1. (37b)

The movement of the valleys is thus in the opposite directions on the two sides of the

real axis. This means that for decreasing (R(x) the path of the integral (35) deforms

as shown in Fig. 7.

FIG.7 DEFORMATION OF THE PATH IN THE U-PLANE
FOR THE INTEGRAL (35). SUCCESSIVE NUMBERS ARE FOR
R( X) DECREASING, STARTING FROM 2Z.

We have thus found, for the entire half plane for which 3 (x) > 0, the solution of

(1) which has, along the line parallel to the imaginary axis and passing through r/2,

the behavior prescribed by (29) and (7); the solution is given to us in the form of an

integral.
n u a + » oo

A he(1)x = / exp [—2ik cos x cos u]mc u du (38a)
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where

Ui obeys (37), (38b)

u2 obeys (36), (38c)

0(x) > 0. (38d)

Fig. 8 illustrates the path for the special case (R(x) = 0.

Formula (38) will now be used to find the range to which the asymptotic formula (7)

is applicable. If we decrease <R(x) from x/2 to some smaller value the two ends of the

path displace as shown in Fig. 7; this displacement leaves undisturbed the location u = 0

of the saddle point while at the same rotating its orientation clockwise; this rotation

FIG. 8 PATH FOLLOWED IN THE U.-PLANE BY THE: INTEGRAL (38);

THE CASE SHOWN IS WHEN X LIES ON THE POSITIVE IMAGINARY

AXIS; THE SADDLE POINT OF THE INTEGRAL LIES AT U=0.

shows up in the passage from Fig. 6 over Fig. 8 to Fig. 9. For large 9(x), the angle a

of the saddle with the x axis is found to be

« = ! + !«(*) (39)

The integral (38) yields then

, (1) exp [ — 2ik cos a; — mt/41 /tn .
M x ~ 1,2k cos   (40a)

with the restriction

9(x) » 0 (40b)
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However, when (R(x) drops below — 71-/2 the situation is altered. The two valleys are

now so far removed that the path has to proceed over three saddles, lying at — it, 0, r.

This situation is illustrated in Fig. 9. Of the three contributions, the one at the origin

retains its analytical form (40a) but the two others will add to it and thus invalidate

it. A similar modification must be applied when (R(x) increases from +ir/2 beyond

+ 3/2ir. The asymptotic expansion (40a) is therefore valid within the range

—= <R(x) ̂  | it. (40c)

FIG.9 PATH FOLLOWED IN THE U-PLANE BY THE INTEGRAL (38)

AFTER R(x) HAS DROPPED SOMEWHAT BELOW THE ORIGINAL

SADDLE POINT REMAINS AT THE ORIGIN, ROTATING CLOCKWISE; IN
ADDITION, TWO NEW SADDLE POINTS, AT -77 AND +77" MAKE

THEIR APPEARANCE.

In the same way we obtain from equation (30)

f2ik cos
(2k cos x)

,,.(2>exp [+2ik cos x + i*/4] >
he x   (oi.   (41a)

if

and from (31)

if

— |ir ^ (R(x) ̂ +1"") (41b)

0(x) » 0, (41c)

, (3) exp [ — 2ik cosx — iir/4]

* * (2k cos *r  (42a)

-| r ^ ffl(x) ^ +| 7T, (42b)

d(?) « 0, (42c)
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and finally from (32)

, (4, exp [+2ik cos x 4* wr/4] ,.n \
**   (2k cos x)1/2 (43a)

if

<R(x) Z +|t, (43b)

d(x) « 0. (43c)

This defining range gives to (40) and (41) a common domain of existence and also

to (42) and (43). In order to give a common range to three functions we use equation

(9). We get from it and (29) that, for positive large y

,v(ir . \ exp [2k cosh y + 4>]

\2 ~ *"/ (2k cosh »)'"
he

while from (42) and (43)

^2 ) (2k cosh y)1/2

, <3>/* . \ exp [2k cosh y — iV/2]
12 ~ %v) —  

exp [ — 2k cos

(2k cosh y)1/2

^)(|_,V)..exP[-2fecosh y]

We know in addition that a universally valid linear relation must exist between these

three functions. In the range considered, the first two are asymptotically large, while

the third is asymptotically small. Hence, the relation must read

hewx = i e* hei3)x + (unknown factor)-heU)x. (44)

Equation (44) is half a connection formula; we shall now see that the other half can be

picked up from consideration of Floquet's theorem.

5. The Floquet Function. According to Floquet's theorem, there exists at least one

solution of (1) which is multiplied with a constant factor when we apply the transla-

tional symmetry operation of equation (1)

x —> x + TT.

This constant is usually written in the form e,T|S. It is known that e,T> oscillates back

and forth from the unit circle to the real axis, having alternately positive and negative

sign in the latter case. Whenever e*T" is real we shall use the supplementary definition

e" = ± eir* (45)

the sign being chosen so as to make the real quantity e'b positive. The lines along

which e"p = ±1 have been studied intensively; a reproduction of the published results
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is shown in Fig. 10.". Figure 11 shows a reproduction of a map of /3 published

by McLachlan. This type of information is still rather incomplete at this time.

We now define as je x or more specifically je* x the solution of equation (1) which

obeys

je+(x + 7r) = e 'pje+x. (46)

A second, generally independent, solution je~ x is then obtained through

je'x = je+(—x) (47)

which yields the identity

je~(x + 7r) = e~>rffje~x. (48)

The normalization constant will be left for later disposal. A very important property

of je x is that whenever ce x equals cenx, je also equals ce„x, and similarly for senx.

45

15 20
q

FIG. 10 "BUTTERFLY DIAGRAM" FOR THE MATHIEU FUNCTIONS
IN THE a-q PLANE. THE LINES SHOW THE COMBINATION OF

VALUES YIELDING PERIODIC SOLUTIONS. INFORMATION CONCERN-
ING THE TWO PHASE ANGLES fi AND 7 IS ADDED.

4See for instance S. Goldstein, Trans. Camb. Phil. Soc. 23, 303 (1927); E. L. Ince. Proc. Roy. Soc.
Edinburgh 46, 20 (1925); 46, 316 (1926); 47, 294 (1927). Also the textbook of McLachlan. loc. cit.
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7

FIG. 11 DIAGRAM SHOWING CURVES OF CONSTANT /3 IN THE
a-q PLANE (McLACHLAN). INFORMATION OF THIS TYPE IS
MUCH MORE RESTRICTED THAN THE TYPE SHOWN IN FIG. 10

The asymptotic behavior of the Floquet function was first obtained by Dougall.5

We shall derive it more quickly by our integral equation method developed in the last

section. The pair of equations to be established is

/% U 9 + »' 08

B+ je+ x = I exp [ — 2ik cos x cos u]je~ u du, (49a)
—2t + i®

B~ je~ x = I exp [ — 2ik cos x cos u]je+ u du. (49b)
— 2ir + »co

u2 is defined by (38c). The resultant path is shown in Fig. 12 for the case 6{(x) = O.6

5J. Dougall, Proc. Edinburgh Math. Soc., 34, 4 (1916); 41, 26 (1923); 44, 57 (1926).
•The path is identical with the one for the generalized Bessel integral for Bessel functions. The

integral permits thus derivation of the Bessel expansion by substituting the Fourier expansion under

the integral sign. These relationships suggested to the author the symbol je for that type of function.
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It is obvious from the discussion preceding equation (38) that as long as 9{x) > 0

the two integrals (49) exist and define two solutions of Mathieu's equation. To complete

the proof we have to show only that they also obey Floquet's theorem. This is seen

as follows. Both terminals of the path lie on the positive imaginary side of the real axis;

therefore if Si(x) increases from an initial value, 0 say, the valleys in which the path

terminates move in the sense contrary to x, in accordance with equation (36). When x

has been increased by 2x the path has been shifted without distortion by an amount

— 2ir. This shift leaves the kernel X(x, u) of the integral equation invariant, but multi-

plies the factor je~ u in the integrand of (48a) with e2r*e; hence the integral has been

multiplied with this same factor and thus obeys Floquet's theorem with the factor

ewie. The same procedure establishes (49b). B* and B~ are constants which will be

discussed below.
The asymptotic expansion of je* x and je~ x is obtained from (48) by applying

the saddle point method discussed in the previous section. The two saddle points lie

at — x and 0, as shown on Fig. 12. Each saddle point furnishes one of the exponentials

FIG. 12 PATH OF INTEGRATION FOR THE INTEGRALS (49)

WHEN X LIES ON THE POSITIVE IMAGINARY AXIS

(33); they can be combined into a single term because we obtain the relative magnitude

of the terms from (46) or (48). The resultant expressions are thus found to be

B+ je* x ~ 2 je 0 exp (|zir/3) (fc J cos (zk cos x - | | (50a)

B je~ x ~ 2je 0 exp (—\iir(S) (fc c^g cos (2k cos x — | - | (50b)

with the restriction

d(x) » 0. (50 c)
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In the real direction the formulas (50) are also limited. The domain of validity is ob-

tained by the methods used to establish (40c). We find

-\\£ <R(s) ̂  +|- (SOd)

We have, however, in this case the exceptionally favorable situation that the formulas

(46) and (48) just supplement (50d) so as to furnish the asymptotic expansion of je x

for all values of (R(a;). One simple way to express this is by saying that under the con-

dition (50c) alone je* x is asymptotically equal to J-p(ke~'x), and je~ x equals J+p(ke~").

The equations (50) would yield the connection formulas between the functions je

and he were it not for the two undetermined constants B+ and B~. This indeterminacy

can be partially removed by inspection, as follows.

(a) As the B's in (50) are factors in the asymptotic expansion of the same function

in two different regions of the complex plane, their ratio can never be zero or infinite.

(b) When je x oc senx both B's are zero; this follows from symmetry considerations

on (49). The formulas (50) do not lose their meaning however, because je 0 also vanishes.

In these equations symmetry demands that the ratio B+/B~ approach —1 as je ap-

proaches sen.

(c) When je x « ce„x, the B's in equation (50) cannot vanish, because ce 0 does

not vanish. Symmetry or the equations (49) demands that the B's be equal. This means

B+/B~ = +1.
(d) Suppose now we are in a region where e'"3 is real. We then enter into equation

(1) with the substitution suggested by (45)

me x ebzp(x).

The resultant equation in 'p(x) is real; its periodic solution must be real because other-

wise there would be two linearly independent periodic solutions. Hence je a; is a real

function of x, and for real je 0, the two expressions (50) must be conjugate complex.

This gives

— = eT(6+<1" (51a)
B~

where b is given by (45) and y is some real number which is integer at the two limiting

lines of the region and increases (or decreases) by 1 as we proceed from the line cen x

to sen x.

(e) Now let e"8 be on the unit circle. We then enter into (3) with the substitution

me x = e$'p(z).

The resultant equation in z is real. If there is to be only one periodic solution p(z) it

must be real along the z direction, and hence the asymptotic expansions (50) must be

real. It follows that

— = ±el(iS+,) (51b)
B~

where c is some real number which vanishes for integer 0. The undetermined sign is

fixed in each of the separate regions of real /? being + between ce2„ and se2»+i and —

between ce2n+1 and se2„ ■
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(f) We can sum up this information by writing

— = eiTlB+y) (52)

B~

where /3 and y are functions of a and q which are fixed up to an even integer and the

sign. The value of /3 and 7 at the boundary lines of Fig. 10 is shown in Table I. These

lines divide up the

Table I Values of /3 and 7 for the Mathieu functions of the first kind

Funtion 0 y

ce2ni even even

cejn+ii odd odd

seim even odd

se2„+i odd even

a-g-plane into "wings" and "gaps". Between these two there is a reciprocal behavior

of and 7. In the wings, /S is real and changes by 1; 7 does the same thing in the gaps.

Inversely, the real part of fi is fixed in the gaps, and it has an imaginary part ib which

varies; this behavior is duplicated by 7 in the wings, where it has a variable imaginary

part ic introduced by (51b). This variation is exhibited in Fig. 10.

6. The Connection Formulas. We start out by writing a formal connection formula

with the help of the parameters 0 and 7 of the last section. We dispose of the normaliza-

tion factor by setting in accordance with (52)

B+ exp [-3*'t(0 + 7)] B~ exp [§»(£ + 7)]
■,e ° = 2(2^ ~ 2(2^P * (53)

This reduces (50) to

je+x ~ (S (JPcos (2k cosx~l + l *p)> (54a)

exp (+\iiry) (nl it 1

r,x~ (2tcosxr C0S {^^"--4,-2'K)- (54b)

The domain of validity is given by (50); it is contained in the larger domains (40) and

(41). We may therefore write down the connection formulas

je+x = \i exp (—^Vy)[exp {-\i-K0)he l)x — exp (-\-\iir$)hewx], (55)

je'x = exp (+§^7)[exp (+^iir0)he{l'x — exp {-\i-K0)he[2)x]. (56)

Further, reversing the sign of x with (29), (30), (31), (32) and (47)

je+x = \i exp (^wry) [exp (%ix0)hem x — exp ( — \iir($)hewx], (57)

je'x = \i exp (—fwryMexp {—%iirfS)hem x — exp (\iir0)heA) x]. (58)

Solving (55) and (56) for hemx we get

hen)x = cosec ir^[exp {^iir(y — 0)}je+x — exp {—5^(7 — 0)}je~x]. (59)
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Eliminating je+ x and je~ x from (57), (58) and (59) we get a relation between hem x,

hew x and heU) x which must be identical with the previously derived incomplete equa-

tion (44). Comparing coefficients, we find thus

.sin Try
i — : = e , (60)

sm irfi ' v '

and the completed connection formula (44)

he'l)x = ie*hei3)x — (i e* cos 7r(3 + cos iry)hewx. (61)

With equation (60), the formal connection formulas (55)-(59) become actual ones,

with coefficients expressible in terms of /3 and $>, which, in turn, are known functions

of a and q. By the use of the subsidiary definitions (45) and (51) we can show up (60)

as an equation between real quantities. Inside the wings of Fig. 10 we get

sinh ire = e* | sin 7r/3 [, (62a)

and in the gaps

sinh Trb = e~* | sin iry \. (62b)

Actually (60) contains a little more than (62); in the wings for instance, it tells us for

each one of the two /3's on which side of the real axis the corresponding y is to be found;

a similar sign is determined in the gaps.

Equation (61) effectively terminates the search for continuation formulas because

it tells us how to continue the simple exponential asymptotic behavior (40) on the other

side of the real axis. A large number of other formulas are derivable from the ones

obtained, such as

je*x = | exp (|ix|8 — 3>)[exp (%iiry)hen)x + exp ( — %iiry)hewx\, (63)

}iemx — — i e*lie{i)x + (i e* cos t/3 — cos iry)he(3) x, (64)

and so forth.

We now come to the connection formulas for the Lindemann-Stieltjes functions. This

task has two stages of difficulty. By symmetry alone we can write down relations such as

ce x cc je+x + je~x,

ce x oc he(1)x + hew x,

se x °c je+x — je'x,

de x cc exp { — \iir$)je+x + exp (+§iirP)je~"

rfei « hewx + hewx,

te x oc /ie<na; — heMx.

In order to make connection formulas out of these proportions it is necessary to have

quantitative information for the points x = 0 and x = x/2. This paper contains no

such information for the point x = 0. For the point x — tt/2, on the other hand, the
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necessary results were obtained incidentally in section 2. We will pursue this only to

the zero stage of the Jeffreys approximation in which we get from (13)

fc0'(f+W" <65)

ke'O = -exp (£$„)(a + 2k2)Wi. (66)

Hence we may write more precisely

dex = 2~te0 ^(1>a: + (67)

X = 2 1 fce'O | ^"X ~ (68)

The connection formulas which exhibit the asymptotic properties of the Lindemann-

Stieltjes functions follow from the ones above by application of (61). We find

ce x « (1 + ie*)hewx — (ie* cosir/3 + cos iry)hemx, (69)

se x <x (1 — ie*)hewx + (cos iry + ie* cos ir(i)hef2)x. (70)

From (40) and (41) it is evident that these two functions always are of the form

* cos 12k cos x-~+ i) (71a)
(2k cos x)

with

second coefficient /7iM

e first coefficient

Perusal of (60) shows that the so defined is always real (not alternating as in (54)).

Simple phase shifts of 0 or tt/2 result from (71) when

cos jt/3 = ± cos 7ry = ± 1

in the combination circumstances warranted by Table I; the shifts are then identical

with the ones in (54). The remaining relation of the pair (69) and (70) gives us then

the asymptotic expansion of the Mathieu function of the second kind whose phase

shift comes out to be given by

tan \f/ = (-)T-y->s-'\

The same formula (61) yields for (67) and (68)

de x — 2 fa q * e*h^2)x + (1 — cos Try + ie* cos irfi)hewx], (73)

te x = ^ | fe'Q | [ie*hewx + (1 + cost? — ie* cos ir$)hemx]. (74)

These equations yield a real phase shift only in the special circumstances warranted

by Table I and equation (54).
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The special information (65) and (66) regarding the point x = x/2 also produces

new information about the Floquet function at this point. Using (63), we get

je | = exp ivf3 - <^j-ke 0-cos | Try, (75a)

je' | = - exp Q 271-/3 - $) • | ke'O | -sin | Try. (75b)

From (75), the connection formula between je, de and te is readily derived.

7. Concluding Remarks. This study is based on the notion that the Floquet param-

eter 0 is a known function of a and q. That this is partly a convenient fiction is seen from

Fig. 11. It is a surprise that the results of this paper do furnish some new information

concerning /3. When we traverse the gap between wings from one bounding curve to

the other, the exponential damping constant b is related to y by (62b). On such a path

7 changes from one integer to the next and | sin -y | passes therefore through its maximum

once. We get therefore the relation for such a path

Max [e* sinh x6] = 1. (76)

This relation was checked from the Figs. 1, 2 and 11 for a stretch where both quantities

are known. The result is Fig. 13 which confirms the prediction (76). In general, varies

sufficiently slowly so that (76) can be used to determine a rough upper limit for b.

FIG. 13 PLOT OF SINH TT\> AGAINST a FOR q = 0.6S.
ACCORDING TO EQUATION (76) THIS PRODUCT IS BOUNDED
BY THE VALUE 1 WHICH IS ACTUALLY ATTAINED AT SOME
POINT. THE CRUDENESS OF THE GRAPH REFLECTS THE
LIMITED INFORMATION OF FIG. 11.

Notwithstanding this small bit of supplementary information concerning /3, there

remains the fact that the two natural parameters for the connection formulas are 0

and y, and that their dependence on the equation parameters a and q is erratic and

not expressible in closed form. It is not likely at this stage that an analytic relation will

ever be found connecting /3 and y to a and q. For this reason, this paper proceeds instead

to find slowly varying and easily determined functions of a and q, from which /3 and y

can be determined by analytic means. One such parameter is $, whose determination

was carried out in section 2, and for which the analytic relation to /3 and y is equation

(60). It is obvious that the accomplishment of the program calls for another such
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parameter, to replace /3. This parameter has not yet been found. It is interesting to

note as a possibility that /3 + y and /3 — -y are simpler in their behavior than either

one of them alone. In the meantime, the connection formulas of this paper must be

used in conjunction with whatever published information is available concerning /3.

8. Appendix on Integral Equations. The following integral equations are new, to

my knowledge, but proved to be of no use in deriving connection formulas. They may,

however, be useful in the hands of others.

Let z, f, w be complex numbers whose real parts are x, {, u and whose imaginary

parts are y, q, v. Then the formulas are

B~je~zje+£ = je 0 J exp [ — 2ik cos z cos f cos w — 2k sin z sin f sin w]je+ w dw, (77a)

B+je+z je~£ = je 0 J" exp [ — 2ik cos z cos f cos w — 2k sin z sin f sin w]je~w die. (77b)

The formulas are generalizations of (49) to which they reduce for the case f = 0. The

path and the range are best discussed in two stages. If

x — £ = 0, (77 c)

then we need

y - V > 0, (77c')

and the path is exactly the one shown in Fig. 12. If

x — £ arbitrary, (77d)

then we need

4
y - r? > 0, cosh2(y - i?) > -, (77d')

and the abscissa u of the terminal valleys is given by the generalization of (36b)

tan (x — £) tanh (y — t)) tanw = 1. (77d")

We set out immediately to prove d and will get c as a special case. We follow earlier

proofs quite closely. The formal equivalence of the integral to a product of solutions

of the Mathieu equation is found in the literature.3 Although the integral exists when

the exponents cancel, we need a negative real part in the exponent in order to implement

the formal steps. This exponent reads

exp = —2ik cos z cos f cos w — 2k sin 2 sin f sin w ± 2ik cos w.

The last term arises from the contribution (33) of the Floquet function; the difficult

sign is the positive one. By an obvious transformation this becomes

exp = —ike~tw cos (2 — f) — ike+,w cos (z + f) -f 2ik cos w.

The second term is of no importance because v is to be positive and large. Introducing

real and imaginary parts this becomes

exp = —ike'e~,u[cos (x — |) cosh (y — 1?) — i sin (x — £) sinh (y — yj)\ + ikeY~'",
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and the exponent's real part is

(R(exp) = — ke" [ cos (x — £) cosh (y — rj) sin u

(77 d")
+ sin (x — £) sinh (y — ??) cos u — sin m].

We now introduce the choice of u indicated by (77d"). This means

cos (x — g) cosh (y — rj) 
sin u =

cos u =

(cosh {y — ?j) -f- cos" (x — £) — 1)

sin (x — g) sinh (j/ — 17) 

(cosh (2/ — 77) + cos2 (x — £) — l)l/2'

We thus get

=CPi(exp) = —ke"I (cosh2 (?/—»?) + cos2 (x — £) — 1)1/2

 cosh (y — t?) cos (x — g) |

(cosh2 (y- v) + cos2 (x — g) — 1)1/5J

— ke' j
= (cosh2 (y-n) + cos2 (»-{)- 1)1/2 [c0sh (2/ " ^

+ cos2 (x — £) — 1 — cosh (y — 17) cos (x — {)].

As stated in (77c), the curly bracket is positive when cos (x — £) = 1 (and also for

cos (x — £) =0); in the general case we form the perfect square

[cos (x - £) - \ cosh (y - 77) ]2

and then pull through on the remainder with (77d')- My surmise is that a more thought-

out estimate could prove (77c') all the time. Having proved the character of the function

under these restrictions we can determine the particular nature of the left hand side

of (77) by first making f = 0 and z large and positive, to get the function of z; and then

2 = 0 and f large and negative to get the function of {. The formulas (77) are thus es-

tablished. If we reverse (77c') and set instead y — y < 0 the roles of y and 17 are reversed

because the integral is formally symmetric in z and f.

What makes the integral (77) interesting is that one can pass with it from positive

to negative imaginary values provided (77c') is maintained. The difficulty in getting

asymptotic expressions is in the location of the saddle points; one saddle point of (77a),

for instance, lies at w = this leads to a trivial cancellation and a confirmation of

formula (50b). The fact remains, nevertheless, that formula (77) permits us to cross

the real axis; this the simpler equations (38) and (49) do not permit us to do.


