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The conditions (4.1) can be expressed in the form

, x " —2St f" sin ht cos zt ,, ,,
(Tr,)r-a =   /    dt (4.2)

We assume

v = f c(t)Ki(tr) cos zt dt (4.3)
J 0

as a solution of the equation of equilibrium (1.3) where c(t) is a function of t only.

The boundary condition (4.2) will be satisfied if

^

Therefore

r°° 2<S'i sin hi cos ztK,(tr) dt ..

V ~ J0 t\GlU(ta) * ( j

In conclusion I offer my sincere thanks to Dr. B. Sen for his help in the preparation

of this paper.

ON CERTAIN SOLUTIONS OF A PENDULUM-TYPE EQUATION*

By GEORGE SEIFERT (University of Nebraska)

Introduction. In the study of the oscillations of a synchronous motor around its

average angular velocity, a differential equation of the following type, the so-called pen-

dulum-type arises [1]:

§ + m f = (i)
where f(6) and g(fi) are functions of period 2 x in 6.

It has been shown [2] that in the case where f(6) = a > 0, a constant, and g(6) =

P — sin 6, where /3 is a constant such that 0 < /S < 1, there exists a constant ac —

ac(|8) > 0 such that if a < ac , eq. (1) will have a solution 6{t) such that if d'(t) =

2/(0), then y(G) = y(fi + 2x) for all t, while if a > ac , no such solutions exist. Following

Vlasov [3] and Minorsky [4], we call any such solution of eq. (1) a periodic solution of

the second kind. Physically, such a solution corresponds to a subsynchronous level of

performance of the motor described by eq. (1). It is known also [5] that questions of

stability of solutions of eq. (1) with respect to the points of equilibrium of (1) involve

questions of existence of such solutions.

The purpose of this note is to exhibit a set of explicit conditions on f(6) and g(6)

which insure the existence of periodic solutions of the second kind for (1). Since it has

already been noted [5] that if f(6)> 0 and either g(d) < 0 or g(6) > 0 for all 6, there

will exist such solutions for eq. (1), we restrict ourselves to the case where f{6) >0 and

the equation g(9) = 0 has a finite number of roots in 0 < 9 < 2x.

*Received April 18, 1952.
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We also show (see Remark 1) that in the special case where /(0) = « > 0 and g(0) =

/3 — sin 0 where 0 < /3 < 1, these conditions lead to a somewhat larger lower bound on

ac that was obtained by Tricomi [2].

Theorem. Let /(0) and g(ff) be twice-differentiable functions of period 2ir in 0, f(0)

> 0, and the roots {0,-}, i = 0, 1, • • • , 2n, of the equation g(6) = 0 in the interval

60 < 0 < 60 + 2ir = 02„ be such that g'(d0) > 0 and g'(di) 7^ 0. Then eq. (1) will have

a periodic solution of the second kind, provided each of the conditions below holds for

each integer j such that 0 < j < n:

1/2

for 0 = 021 ;(i) -f'(e)g'(d) < 2g"{6)^~f>- + g'{6)

(ii) r{0)g(6) < 2(g'(62i) - g'(8))(f~ + for 02,■ -1 < 0 <

(iii) the equation f,-(0) = /(0)^,(0) — <?(0) = 0 has m > 2 roots {p,-"}, i = 1, 2,

m, such that 02;_2 < p,u> < p,<2> < • • • < p]m) < 02;, for which F'(p,-0) ^ 0 when

i — 1, 2, and

['" g{e) de > ['" /(0)Ay(0) de + h^) f" f(e) de (2)
Jti' •'<>,■ "> .'s,«

for 62,-i < 0 < 02/

h,(0) = <
'/i,-2)(0) for 02,_2 < 0 < 02,_l ,

A'1,(0) = f rfs>

A,<2,(0) = f6"" f(s) rfs +
J e

and 0* is the largest root of /(0)/i, (p'2)) = <7(0) such that 0^ < p-1'
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Remark 1. In the case for which g(6) = /3 — sin 0, 0 < /3 < 1, and f(6) = a > 0,

we put 6i = arc sin /3, 0 < 0, < r/2, 02 = ir — 0i , and 0O = 02 — 2w. Conditions (i)

and (ii) of the theorem are trivially satisfied. If we require that

- +
2 ^ (i+£ J? ®

then /^(S) = ah^d) — 0 + sin 0 = 0 will have two roots, p"' < p[2) for which 0 < p[2) <

0i , and clearly /ii(pl2>) < £/«, which implies that 6* is such that 90 < 6* < — x. Hence

inequality (2) of condition (iii) holds since

0(02 - 0*) + cos e2 - cos e> -a{e2 - e*,) > A,(pi2>)a(02 - 01),
a

and thus inequality (3), which can be written as follows:

a - i (|+ cos 0i) -

insures the existence of periodic solutions of the second kind in this case. The right hand

member of this last inequality will, then, serve as a lower bound on ae defined in the

introduction. Tricomi's lower bound on a, is

* (* + cos eX"
7T Y7T /

[2].

Proof of the theorem. If we put dO/dt = y, eq. (1) becomes dy/dt = g(6) — f(6) y,
and the equation of the phase trajectories becomes

dy _ g(e) - f(0)y , .
dd y ' W

The singularities (in the sense of Poincare) of eq. (4) consist of the points (0< , 0) of the

(6, y) cartesian phase plane, the 0, being the zeros of g(6). An analysis of these singularities

shows that the points (02l , 0) i = 0, 1, • • • , n, for which </'(02,) > 0, are saddle points,

and the phase trajectories on these points, the so-called separatrices, have slopes given by

JJM ± 't"D ' N,/2

respectively.

We note that in the region Rx of the phase plane bounded by the curve of the equa-

tion y = g(d)/f(6) and the 0-axis all phase trajectories have positive slopes, while in

remaining part of the phase plane, R2 , the trajectories have non-positive slopes, having

slope zero only at points on the curve of y = g(fi)/}{0).

For fixed j, let us consider the solution 2/, (0) of eq. (4) corresponding to the phase

trajectory going into (02i , 0) from the left with negative slope; i.e. y,(6) is such that

Clearly, we have either > 0 for 02,_2 < 6 < 02j > or there exists a point (0, , 0)

02 » -such that e2i-2 < 0,M) < d2i for which = 0. (See fig. 1). Suppose such a 0,U)

exists; then the solution y\(0) for which (02,_2) = 0 and lim9^9+,f_, y',-i(d) > 0



130 NOTES [Vol. XI, No. 1

must be such that > 0 for 02<_2 < 0 < 02,- ; for if not, its trajectory would have

to intersect the 0 axis in 02;-i < 8 < d2i , which would imply the intersection of the

trajectories corresponding to yfl}(0) and (/,(0), which is impossible. Hence y}l{(6) > 0 for

02/ — 2 8 ^ 02i .

If this holds for j = 1, 2, • • • , n, it is easily seen that y»l)(d2n) > 0, for if not, its

trajectory would have to intersect that of some one of the 2/,a)(0), j = 1, 2, • • • , n, which

is impossible. Hence, 0 = yo\do) < y"' (02n) = yal>(6» + 27r). On the other hand, the

solution y'02\d) for which t/^2)(0o) = M, where M is such that g(8)/f(8) < M for all 0,

has the property that y{2){80) > y(02\d0 + 2x). By an argument used by Amerio [5], which

we omit, we conclude that there exists for eq. (4) a solution such that y{6) = y(d + 2w)

for all 0.

We need only show, then, that the existence of some integer j, 0 < j < n, such that

2/,(0) > 0 for 62,-2 < 0 < 02; will contradict the conditions of the theorem. To this end,

we show that ?/,(0) < h,(8) for p|2) < 0 < 02, , and ?yJ(0) < /i,(p,<2>) for 0* < 0 < p,'2)

where p|-2> and 0* are defined in the statement of the theorem.

We first note that 02,_2 < p'2) < 02i_i . Define$,(0) = A,(0) — y,-(0); we have, clearly

= ^>:(02.) = 0 and will show that condition (i) implies <t>''(d2i) > 0. We have from

eq. (4),

_ lim i-wwr -mrn + rn _ m
8-9,;- I yi\8)

= lim
-2yMWAd) - My'XO) - f'(e)ym + g"(0)

y'(6)

~ f'(62,)

by L'Hospital's rule. From this and the fact that h'(d2i) = y'(82l), we obtain

."ffl \ _ g,,(02,) - 2m,)fr,(02,o
^2lJ 3^(02,) + /(02,) '

and by a routine calculation which we omit we note that the assumption h'/(82j) <

y''(d2l) would contradict condition (i). Hence <f>''(62i) > 0 and there is an t > 0 such

that for 02i — e < 0 < 02i , we have 0, (0) > 0; i.e. (0) > 2/,(0).

We show next that for any 0 such that 02,-i < 0 < 02)- , the assumption 4>,(8) = 0

would contradict condition (ii). For suppose for 0 = 8a in this interval, 0,(0„) = 0; then

there exists a £, 0„ < | < 02,-, such that <£$(!) = 0, <£''(£) < 0. From eq. (4) we have again

y, (») - ^(fl) - / (°)

and also

g(e)
Viio) =

hence eq. (5) becomes

y'(e) + f(ey

.,(ns \-[y'm2 - My'M + g'mwie) + M) m
Vi (0) - ^ / (*)•

If we put 0 = £ in this last equation, use /t'(£) = ?/'(£)> and recall that <7(£) < 0, a routine

calculation will again show that the condition h''(£) < y'/(£) contradicts condition (ii).

We next consider the interval p,-2) < 0 < 02;-i . Recall that in this interval g(6) > 0,

the equality being possible only for 0 = 02,_j . Note also that y'(6) = — f (0) for 0 = 02,_, .

Now if for 0 = 06, p,-2) < 8b < 02,_! , we have ?yJ(06) = ^,(06) = (0^), there exists an
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77 such that db < t] < d2i-1 for which y'(rj) < but this clearly implies

y,iv) = y'Avf+ f(v) < °
which contradicts the assumption 2/,(0) > 0 for 02i-2 < 0 < 02l- . We thus conclude that

y,(0) < h,{6) for p\2) < 0 < 02,_, .

Finally, we note that for 0* < 8 < pf\ the curve of y = f(0)/g(O) is above the line

y = /ij2>(pj2)); this clearly implies that ?/,(0) < /t,(p-2)) for 0 in this interval.

To sum up, we have that for p]2) < 0 < 02i we have 2/,(0) < h,{0), while for 0* <

6 < p,-2) we have y,(0) < ft,(p,<2>).

We now substitute y = ?/,(0) in eq. (4), multiply by ?/,■(#), and integrate from 9* to

92, ; we obtain

~[y,(e*d?/2 = f " g(0) d0 - f " f{0)yi{0) do.
Jdi* J 6 i*

Hence

[ g{0) d0 < I f(0)y,(0) dO.
J e* Jet*

However, clearly,

[ " f(0)y,(0) dO < [ " f(0)h,(O) dO + A,(p<2>) [" f(0) dO
J Bj* Jpjl*) J$i*

which, taken with the previous inequality, contradicts condition (iii). This proves the

existence of 0,-1', such that 02/-2 < 0/1' < 0-u , for which y,(O]1') = 0; hence, the theorem.

Remark 2. In the special case considered in Remark 1, we note that

K{0) £ 0 ~ 8'n,e ~ ahl( ~ for 0 < 0 < 0, .

This shows that y = h, (6) is not a curve for which each trajectory crossing it from the

right passes below it; if it were such a curve, conditions (i) and (ii) clearly would have

been unnecessary in this case.

Remark 3. Since it is usually a question of imposing conditions on the parameters in

f(0), it is sometimes more convenient to replace inequality (2) of condition (iii) by the

simpler but stronger condition:

['" g(o) do > *,(pH f" M do.
Jej* Jdj*

On the other hand, condition (iii) can clearly, at the expense of simplicity, be weakened.

We omit the details.
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