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MIXED BOUNDARY VALUE PROBLEMS IN SOIL MECHANICS1

By

R. T. SHIELD2

Brown University

Summary. The stress-strain law for an ideal soil formulated in a recent paper

[l]3 is applied here to obtain the velocity equations referred to the stress characteristic

lines in plane strain problems. Simple velocity fields associated with families of straight

characteristic lines are then examined, together with discontinuities in the velocity field.

The results are applied to obtain the incipient velocity field for the indentation of a

semi-infinite mass of material by a flat punch or footing, and to solve the problem of

indentation by a lubricated wedge.

1. Introduction. In deriving the solutions .of two-dimensional problems in soil

mechanics, it is usual to assume that the soil is a plastic material in which slip or yield-

ing occurs when the stresses satisfy the Coulomb formula [2]

. n 

/ = 2 a" s^n f \4 — — c cos V ~ 0, (1)

where c is the cohesion and <p is the angle of internal friction of the soil. The stresses

also satisfy the equilibrium equations

dcrx , dr„ =

dx ^ dy

d TXy | d(7y   -

dx ~l~ dy '

(2)

in which the weight of the soil is neglected. The equations (1), (2) are hyperbolic and

the two characteristic directions are inclined at an angle x/4 + <p/2 to the direction of

the algebraically greater principal stress. In Fig. 1, the lines 1, 2 are the directions of the

y w

it J 4 + <t>/ 2

2nd failure line

FIG. I. Failure Lines

Received March 17, 1952.

'The results presented in this paper were obtained in the course of research sponsored by the Office

of Naval Research under Contract N7onr-358 (Task Order 1) with Brown University.

2Research Associate, Graduate Division of Applied Mathematics, Brown University.

'Numbers in square brackets refer to the bibliography at the end of the paper.



62 R. T. SHIELD [Vol. XI, No. 1

principal stresses , a2 (ci < o~a) at a point and the lines a, 0 are the characteristic

lines passing through the point. We shall call the characteristic line which lies between

the 1 and 2 directions the first failure line and denote by 6 the angle of inclination of this

line to the x-axis.

If we now put

= (*-> ~ T.) > Q (3)
2m srn (p

where m is a positive constant which has the dimensions of stress, then, using (1), it

can be shown [3] that

<tx = — mp[ 1 + sin <f> sin (26 <p)] + c cot <p,

(4)<7„ — — mp[ 1 — sin <p sin (28 + <p)] + c cot <p;

rxv = mp sin <p cos (26 -f- <p).

The equations of equilibrium (2) can be replaced by the equations

| cot <p log p + 6 = const. along a first failure line, )

> (5)
| cot <p log p — 6 = const. along a second failure line, )

which were first obtained by Kotter [4].

The three stress components, ax , <r„ and txv , are determined from the equilibrium

equations (2) and the yield condition (1); alternatively, they can be determined by

integrating equations (5) along the failure lines. The usual treatment of plane-strain

problems assumes that the problems are statically determinate. In general, however,

the stress boundary conditions are not sufficient to make the problem statically de-

terminate and a stress-strain law is necessary in order to allow a more complete in-

vestigation of the problem. In the following we shall use a stress-strain law which is

derived by assuming that the soil is a perfectly plastic body. It should be remarked that

this assumption neglects many practical effects (such as the presence of water in the

soil). The predictions of the theory must be compared with the actual behavior of soil

in order to obtain an indication of the value of the assumption.

2. The velocity field. Drucker and Prager considered a proper generalization

of the Coulomb hypothesis (1) and they showed that if the soil is assumed to be a plastic

material then, according to the concept of plastic potential [5], the stress-strain law

for plane strain corresponding to the yield function (1) is

€
^ d/ x J - . (<Tt — g-„)/2 

■r rj O <P I ri / \2 | 2 11
0(TX 2 ^ [j(<Tx — <TV) + Txu\

_ s d/ _ x J . (<TX — 0-,)/2
— a — 0 Ssin cp ri, v 2 | 2 i

o(Ty 1 I liv^x ~ O + rxuJ

, df
Txy n

(6)

dTXv [ita — O" +

where ex , , yzv are the plastic strain rates and X is a positive factor of proportionality

which may assume different values for different particles. Since we assume that there is
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no deformation of the soil until plastic yielding occurs, the plastic strain rate is equal

to the total strain rate, and we have

du __ du dv

€x ~~ dx' ~ dy' ~ dy + dx'

where u, v are the components of velocity along the x, y-axes. Using equations (4),

equations (6) can be written

= | {sin v - sin (26 + 40)},

e„ = | {sin <p + sin (26 + *>)}, (7)

yxv = A cos (26 + <p).

From the stress-strain relations (6) or (7), the rate of dilation is found to be

+ e, = X sin <p > 0, (8)

so that an important feature of the relations is that plastic deformation

must be accompanied by an increase in volume if <p 9^ 0.

If we put 6 = 0 and 6 = — (x/2 + <p) in turn in the first equation of equations (7)

we find that

<du\ Idu)

axJ \ax> = °- (9)C/X/ S^o \OX/ 0 =* — (t/2 + <p)

These equations express the fact that the rate of extension along the failure lines is

zero.

The components u, v of the velocity vector are to be determined from equations

(7) when the pattern of the failure lines is known for a given plastic stress field. It can

easily be shown that the characteristics of the velocities coincide with the characteristics

of the stresses and it is more convenient to refer the velocity equations to the character-

istic lines. We denote by y, and v2 the orthogonal projections of the velocity vector at a

point on the directions of the first and second failure lines passing through the point

(see Fig. 2). The signs of these velocity projections are chosen so that a counterclock-

x

FIG. 2. Velocity Projections
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wise rotation of the positive direction along the first failure line through an angle of

71-/2 -J- <p transforms it into the positive direction along the second failure line. The

velocity projections vl , v2 are related to the cartesian components u, v of the velocity

by the equations

i>i = u cos 6 + v sin 6, v2 — ~u sin (6 + <p) + v cos (6 + <p), |

Vt cos (6 -+- <p) — v2 sin 6 Vi sin (0 + <p) + v2 cos 0
u -  , v = .

cos <p cos <p

(10)

J
The substitution of these equations into equations (9), which state that the rate

of extension along the failure lines is zero, gives the equations of the velocity field referred

to the characteristic lines,

(by — (vi tan <p + v2 sec <p) dd = 0 along a first failure line, )

> 01)
dv2 + (*>i sec <p + v2 tan <p) dd = 0 along a second failure line.,)

These equations can also be obtained as follows. In Fig. 3, A and B represent two neigh-

z/\V+ dV

Vj ton^) + v^

FIG. 3. Inextensibility of failure lines.

boring points on a first failure line separated by an infinitesimal distance dsi . The end

points of the element AB move with the velocities indicated in the figure. The extension

of the element may be considered to be caused by the following two circumstances:

(i) the velocity along the element at A is smaller than the corresponding velocity at B

by an amount dvj , and (ii) the normal component of the velocity at A and the normal

component of the velocity at B are inclined at an angle dd. The corresponding rates of

extension are dv^/dsi and — (Vj tan <p + v2 sec <p) dd/dsi , since the normal component

of velocity at A is vx tan <p -f v2 sec <p. The condition that the total rate of extension along

a first failure line must be zero is therefore

dvi — (j/j tan <p + v2 sec <p) dO = 0

along a first failure line. This is the first of equations (11) and the second equation can

be obtained in a similar manner.
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Equations (11), together with the velocity boundary conditions and the condition

that the dilatation must be positive, suffice to determine .the velocity field when the

failure lines are known.

3. Families of straight failure lines. The .simplest pattern of failure lines consists of

two families of straight lines intersecting at an angle 7r/2 -j- <p. As can be eeen from

equations (5), this pattern corresponds to a region of constant stress and it is usually

called an active Rankine zone or a passive Rankine zone in the literature -of soil me-

FIG, 4. R«glon of Constant Stress.

chanics. In Fig. 4, the x and y axes are taken along the directions of the minimum and

maximum principal stresses respectively. Since 6 is constant along the failure lines,

equations (11) show that Vi is constant along a first failure line and v2 is constant along

a second failure line. If we denote by dx and d2 the distances of a current point from one

of the first failure lines and one of the second failure lines, say the failure lines which

pass through the origin, then we can write

Vt = f(d i), v2 = g(d2),

where

d, = -x sin (| - |) + y cos (| -

d2 = x sin - |) + y cos — |),

and where the functions / and g are such that the .dilatation is positive everywhere in

the region. The cartesian components of the velocity vector are found from (10) to be

u = cos (| + §) - 9(d2) sin ~ f)}/ cos

j/(rf,) sin (| + f) + g(d2) cos / cos <p.
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When one of the families of failure lines consists of concurrent straight lines, the

other family is a system of logarithmic spirals which have the point of intersection as

centre. This stress distribution is usually called a zone of radial shear. In Fig. 5 we have

FIG.5. Zone of Radial Shear.

taken the first failure lines to be the family of straight lines and we denote by r the

distance from the centre of the spirals. Since 6 is constant along the first failure lines,

vx is constant along these lines and we have

Vi = /(<?)•

Substituting for Vi in the second of equations (11) we obtain

v2eH*DV' = -sec v [ f(6)edO + A
J 0O

along a second failure line. In this equation A is a constant of integration which is con-

stant along each second failure line but which may take different values on different

second failure lines. Since the spirals are given by the equation

re9®*"" = constant,

the function A can be written in the form

A = g(reH

The functions / and g must be such that the dilatation is positive everywhere in the

region. When f(6) is zero, i.e., when v, is zero, we obtain

v2 = Ae~H"v,

so that v2 varies exponentially along each second failure line.

If the second failure lines had been taken to be the family of concurrent straight

lines then we would have obtained

r9
V2 = f{e), Vie-'1"" = sec <P /(6»)e_"*n,p dd + A,

JBo
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where A is constant along each first failure line. As before, /(0) and A must be such

that the dilatation is everywhere positive.

4. Discontinuities in the velocity field. It can be shown, as in the theory for a

perfectly plastic material, that a line separating a region of plastic flow from a region

which remains at rest must be a failure line. This follows from equations (11) because,

if the line were not a failure line, a region at rest on one side of the line would imply a

certain region at rest on the other side of the line. This still applies if the velocity field

is discontinuous across the line separating the two regions. A line of discontinuity in

the velocity field must be regarded as a thin layer producing a continuous transition

from one velocity field to another. Since a discontinuity in the tangential velocity must

be accompanied by a separation or discontinuity in the normal velocity, the transitional

layer must have appreciable thickness for a soil while there is no need for such a layer

in a Prandtl-Reuss material (for which <p = 0).

Let P be a point on the median line of such a transitional layer and take the x, y axes

along the tangential and normal directions at P. Since, at P, du/dx and dv/dx must be

negligible compared with du/dy, the strain rate tx must be very small compared with

the strain rate yxv . The stress-strain relations (7) show that this can only be so if we

have 9 = 0 or t, or 6 = ir/2 — <p or 2>t/2 — <p, that is, if the line of discontinuity is a

first or second failure line respectively. Also from (7), for these values of 0, we have

dv .
= — = X sm <p,

- dU
yxv — — = ±X cos <p.

I
I (12)

the positive or negative sign being taken according as the line of discontinuity is a first

or second failure line. Equations (12) show that the change in velocity across the line is

inclined at angle <p to the line of discontinuity. Further, if we denote by u, and w, the

values of the velocity component u on the sides of the line of smaller and larger values

of y, then equations (12) show that u2 > ux or ux > u2 according as the line of discon-

tinuity is a first or second failure line respectively.

The straight line and the logarithmic spiral of angle <p are the only lines of discon-

tinuity which permit rigid motions, translation and rotation respectively, of the regions

separated by the line. These two types of "sliding" discontinuity have been used by

Drucker and Prager to obtain upper bounds for the critical height of a vertical bank of

soil.
5. Indentation by flat punch. In this section the theory developed above is applied

to the indentation of a semi-infinite mass of soil by a flat rigid punch or footing (under

conditions of plane strain). A possible plastic stress distribution was determined by

Prandtl [6] and we shall consider this stress distribution together with an alternative

solution. The two stress distributions, which give the same value for the bearing capacity

of the soil, are illustrated in Figs. 6 and 7. They correspond to the two solutions proposed

by Prandtl and by Hill [7] for the same problem in a perfectly plastic material (for which

<p — 0). It seems probable that Prandtl's solution is more nearly correct when the punch

is sufficiently rough, while the other solution will apply when the surface of the punch

is smooth.
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Referring to Figs. 6 and 7, plastic regions begin to form at A and B as soon as the

load is applied to the punch, but no indentation's possible until the plastic region extends

all the way from A to B. We consider only the incipient plastic flow so that the boundary

conditions are satisfied at the underformed surface. The problem of determining the

stresses and velocities after the punch has penetrated a finite distance is of greater

difficulty and would require a study of the successive phases of the plastic flow.

FIG. 6. Prondtl Solution.

*/ 4-^/2

FIG. 7. Alternative Solution

Consider first the solution represented by Fig. 7, and since it is symmetrical about

the axis of the punch, we need discuss only the left-hand plastic region. The regions

AOC, ADE are regions of constant stress (active and passive Rankine-zones respectively),

while the region ACD is a zone- of radial shear. We take the downward velocity of the

punch as the unit of velocity so that along AB the downward component of the velocity

of the material must be unity. The material below the second failure line OCDE remains

at rest so that OCDE is a line-of discontinuity. Thus the velocity along this line is every-

where inclined at an angle (p to the line, Le., along this line vx = 0. It follows that v, =

0 throughout the plastic region since vl must be constant along each first failure line.

In the region AOC, v2 is also constant and the region moves as a rigid body in the

direction perpendicular to AC. If v is the velocity of the region then the boundary con-

dition along AO gives

" -sec (l +l)>
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and we also have

v2 = v cos <p = cos tp sec (i + f)
in this region. In the zone of radial shear ACD, we have

v2 = Ae~H'av,

where A is constant along each second failure line. Since v2 is constant along AC, we

see that v2 is constant along each first failure line of A CD and also

v2 = cos <p sec | — I J-Uan?)

\4 ^ 2/

along AD. Finally, the region ADE moves as a rigid body with velocity V = sec (tt/4 +

(pj2)e(t'lT"')r/2 in the direction perpendicular to AD. The velocity field is represented

by the small arrows in Fig. 7.

FIG. 8 Resulting deformation of square grid if incipient velocity field was

maintained for a short time, according to alternative solution

Figure 8 shows the distortion of a square grid which would result if the initial velocity

field was maintained for a short period of time (where <p is taken to be 20°). In obtaining

this diagram a thin transition layer was assumed to exist between the line OCDE of

Fig. 7 and the material which remains at rest. The initial position of the layer is indi-

cated by broken lines in the figure.

The initial velocity field for the Prandtl solution, Fig. 6, can be obtained in an anal-

ogous manner. In this case the region ABC moves downward as a rigid body and the

lines AC, BC in addition to the lines CDE, CFG, are lines of discontinuity. As before,

we take the downward velocity of the punch as the unit of velocity. Referring to the

left-hand side of Fig. 6, the material below the second failure line CDE remains at rest

so that the velocity along this line must be inclined at an angle <p to the line. Hence

Vi = 0 along this line and since the first failure lines are straight it follows that vx — 0

in the region ACDEA. The velocity of the material just to the left of the discontinuity

line AC is perpendicular to AC and its magnitude must be such that the change in

velocity across AC is inclined at an angle <p to AC. By drawing the velocity diagram
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shown in Fig. 9, we see that the velocity must have the magnitude

1 (r <p\
v ~ 2 S8C \4 2/

In the zone of radial shear ACD the velocity increases exponentially to the value

7 = |sec(^ + | y

-Change in velocity

FIG. 9 Velocity diagram for discontinuity line AC

in Fig. 6.

on the line AD. The region ADE moves as a rigid body in the direction perpendicular

to AD with this velocity V.
The small arrows in Fig. 6 represent the velocity field. The distortion of a square

grid which would result if the material moved with this initial velocity field for a short

period of time is shown in Fig. 10 (where <p is taken to be 20°). Thin transition layers

were assumed to exist between the lines AC, BC and the material in ABC which moves

downward with the punch, and a thin transition layer was taken between the line EDCFG

and the material at rest. These layers are indicated by the broken lines in Fig. 10.

We notice that the velocity V of the material along AE in the Prandtl solution is

FIG. 10 Resulting deformation of square grid if incipient velocity field was

maintained for a short time according to Prandtl solution
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exactly half the value of the corresponding velocity in the alternative solution and the

velocities are inclined at the same angle, jr/4 + <pj2, to the surface AE. For a given

width AB of the punch, however, the length of AE in Fig. 6 is twice the length of AE

in Fig. 7. It follows that the volume of soil raised above the undisturbed surface after

the punch has penetrated a small distance is the same in both solutions.

6. Wedge indentation. We now consider the problem of the indentation of a semi-

infinite mass of soil by a smooth, rigid wedge under conditions of plane strain. The

solution of the same problem in a perfectly plastic material was obtained by Hill, Lee

and Tupper [8], and the solution for the material that we are considering follows this

solution closely. Since the configuration is geometrically similar at each stage of the

penetration, it is possible to obtain the complete history of the motion without following

the deformation step by step.

As the wedge is pressed into the soil, the displaced soil will form a raised lip at each

side of the wedge, and the shape of the lips must be determined as part of the solution

to the problem. We shall assume that the surfaces of the lips are straight and show that

a solution exists which satisfies this assumption. The pattern of failure lines is indicated

FIG. II Indentation by lubricated wedge

in Fig. 11. AE is the right flank of the wedge, which is of angle 2/3, BG is the as yet unde-

formed surface of the soil and AB is the lip. The regions AED, ABC are regions of con-

stant stress while ADC is a zone of radial shear of angle a. We denote by I the length AB

of the lip, by b the distance of 0 from AB, and by h the elevation of A above OB. The

depth of penetration of the wedge is denoted by t and if the downward velocity of the

wedge is taken as the unit of velocity, we may take t to be the time variable.

The lip AB makes an angle (3 — a with the undisturbed level OB and it is easily

shown that we have the following expressions for I, b, h in terms of t, a, /3:

(13)

! «»nr £an _ 'Ej cos 0 _ gJjj _

I tan (z _ |^ cog 0 - sin (0 _ a)|,

1 = 1/ tan - £ j cos 0 - sin (0 - a)

h = t sin (0 — a) / \e

t sin (/? — tan — |) sin /3 + cos (j3 — a)

b =

(4 ~ 2) C0S 13 ~ Sin ^ ~ a)
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The first failure line BCDE is a line of discontinuity in the velocity field so that the

velocity vector along this line must make an angle <p with the line. It follows that v2 — 0

along BCDE and therefore v2 is zero throughout the plastic region ABCDE, since the

second failure lines are straight. In the region ADE, vx is constant and given by

Vi = V COS <p,

where v is the magnitude of the velocity vector in ADE. The boundary condition along

AE requires that the velocity of the wedge and that of the soil in contact with it must

have the same projection on the normal to AE, and therefore

v = sin a sec I + l)-
In the zone of radial shear the velocity increases exponentially along each first failure

line, and along AC the velocity vector has the constant magnitude

V = sin /3 sec
( ^ j a t&n tp

\4 + 2/

At a given instant, the region ABC is moving as a rigid body with velocity V in the

direction perpendicular to AC. The velocity field in the plastic region is illustrated on

the left of Fig. 11.
The projection of the velocity of the lip AB on the normal to AB is

V C0S (i ~ l) = Sin 18 tan (l + 2)e°""

while the projection of the velocity of the vertex E, which is moving downward with

unit velocity, on the normal to AB is cos(/3 — a). Hence, the distance of E from AB

increases at the (constant) rate which is the sum of these two projections. At a time

t, i.e., since the beginning of the indentation, the distance of E from AB has therefore

reached the value

i[sin j8 tan (i + + cos 03 - «)]. (14)

From Fig. 11 we see that this distance is also equal to

b + t cos (/3 — a), (15)

and equating the expressions (14) and (15) gives

b = t sin /3 tan (| + |)e",anv. (16)

The substitution of the expressions (13) into this equation furnishes a relation between

the angles a, /3, and after some reduction we obtain

cos (2/3 — a) =

, a|~e«tan»> tancos a\ e°"°' tan (7 + |J + tan (J - |

{2 sin a + tan (\ + |) + tan (| - |)}

(17)
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The variation of the angle a with the angle /S, obtained from (17), is shown in Fig. 12

for <p = 20°.

The pressure P on the flank of the wedge can easily be obtained from the pattern

of the failure lines and the boundary condition of zero traction along AB. It is found

to be given by

P = c cot tan2 (| + |) - l},

where, as before, c is the cohesion of the soil.

FIG. 12 Variation of P and a with /3

The variation of P with the angle 0 is shown in Fig. 12 for <f> = 20°. Since we have

AE = I tan (I - f>
the total downward force F necessary to drive the wedge into the soil is given by

F = 2PI sin £ tan - |

The determination of the motion of a particular element of the soil appears to be

rather complicated since the velocity of the element is influenced by its varying position

in space and also by the continual expansion of the velocity field. However, the use of

the unit diagram introduced by Hill, Lee and Tupper greatly facilitates the solution.

The unit diagram is obtained by transforming the velocity field into a geometrically

similar field in which the penetration is always unity. This is effected by the trans-

formation

r = r*t,

where r is the actual position vector of the element with reference to 0 and r* is its corre-

sponding position vector in the unit diagram. The method of determining the trajectory

of an element is very similar to that used by Hill, Lee and Tupper for the perfectly

plastic material and for brevity we omit the details of the solution. The unit diagram,
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with three typical trajectories, is given in Fig. 13, and in Fig. 14 we show the deformation

of the originally square meshes of a grid, where we have taken ft = 30°, <p = 20°.

It is also possible to solve the problem when there is a moderate amount of sliding

friction between the soil and the wedge. The angle of the wedge must not be too large

in order to make it possible to extend the plastic field in a satisfactory manner below

the vertex of the wedge. In this case the lines of failure do not meet the flank of the

wedge at an angle x/4 + <p/2 but the pressure on the wedge is uniformly distributed.

The lip AC is still straight although it is inclined at a smaller angle to the undisturbed

surface.
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