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Abstract. Formulae are found for the coefficient of reflection from varying media of

a type encountered in physics. These are applied approximately for some general classes

of media, and exactly for some specific cases. Many media which would normally be

expected to be highly reflecting are shown to be completely transparent to certain

waves at least and, in some cases, to a whole spectrum of waves. The results are con-

sidered both for electromagnetic (or other classical) waves and for mass waves.

I. Introduction and Summary. Many problems of wave propagation through varying

media introduce the equation

^ + 9&)f = 0 (1)

for solution. This equation was studied some years ago by Lord Rayleigh [1] and others

in connection with classical wave problems. The advent of quantum mechanics has led

to a more thorough investigation of the solutions of (1), centered around the method

developed by Brillouin [2], Wentzel [3] and Kramers [4]—the B.W.K. method. More

recent work along these lines has been carried out by Kemble [5, 6], Langer [7, 8, 9],

and Furry [10]. Exact solutions, in terms of hypergeometric functions, can be found if

g(x) is of the proper form; this method of attack was developed by Eckart [11] and

Epstein [12], In all these treatments, great attention has been paid to solutions obtained

when g{x) is positive for some ranges of x and negative for others. Such solutions are

of particular interest in quantum mechanics, in some oblique incidence problems, and

in problems of electromagnetic wave propagation through a conducting medium such

as the ionosphere.

In the present paper we will deal with functions g(x) which are everywhere real,

finite, and continuous, have a constant positive value for large values of | x |, and lesser

values in a region of variation about x = 0.

Solutions are obtained in terms of a new variable r = r(x) which is itself a solution

of a Riccati equation.! Exact formulae, also in terms of r, are developed for the re-

flection coefficient of a medium. The curve of r(x) is traced by inspection of the de-

termining differential equation. A surprisingly large amount of information about r can

be found in this way, but the procedure is only qualitative.

By this method, then, we obtain an approximate evaluation of the exact solution,

rather than an exact evaluation of an approximate solution as is found in the B.W.K.

method. This difference of approach leads to a difference in applicability. The B.W.K.

method is of prime importance in deriving numerical results in a particular given

problem, although it has been used to infer some general results. The present method
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fSee the paper by S. A. Schelkunoff [16] for comments on the occurrence of the Riccati equation in
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leads to the construction of problems to which it can give an exact solution, predicts some

general results, and indicates some surprising (?) results which can be obtained if the

medium is of the proper form. In particular, it is shown that many media which might

be expected, by inference, to be highly reflecting can be completely transparent to one

frequency (or energy) at least. This is particularly true of media in which g{x) is negative

in two separated regions; in this case a whole spectrum may be transmitted.

The formulae are developed in the symbolism commonly used in electromagnetic

wave propagation, but the results are also considered in terms of mass waves.

II Electromagnetic Waves. In the electromagnetic wave problem, an equation of

the form of (1) comes from eliminating time, t, from

S " ? = 0 (2)ox C at

by setting

* = (3)

One thus obtains

0 + kWf = 0. (4)

Here n2 = n2(x) is the effective permittivity, c is the vacuum speed of light, and k is

the (real positive) circular wave number in vacuum.

We shall here be concerned only with media for which n2 = n2(x) is real, finite,

continuous, and such that

n = 1 for | x | > xa > 0,

(5)
n2 < 1 for | x | < x. .

These conditions are imposed primarily for convenience of discussion, and most may be

removed if proper modifications in the development are made.

Introduce r = r(x) by defining

f = exp ̂ Jk J r(s) <fej (6)

where x0 is an arbitrary real constant. Substituting this into (4) we get

2 2^' dT tp7\

n ~lTx <7)

as the equation determining r(x). We shall allow only continuous solutions of (7) so

that / and df/dx will be continuous. Three solutions of (7) will be of particular interest

to us; they will be denoted r+, r~, and r', and are characterised by the following conditions:

r+ = 1 for x < —x„ , (8)
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r~ = — 1 for x < —xa , (9)

r' = 1 for x > x„ . (10)

Writing

r+ = n + ir2 (11)

where rx and r2 are real, equation (7) yields

r; + 'g, (12)

0,2r,r,-ig, (13)

since we are taking n2 to be real. Equation (13) gives immediately

r' = S£l0||ri1 (14)

nix)
ri(x0)

(15)

by which we obtain

f r+(s) ds = J n(s) ds + ^ log

For convenience, take x0 = —xa so that, by (8) and (11)

ri(x0) = r,(-xa) = 1, (16)

and hence we can write

r " vrfeiexp [ik /-.r,w *] (17)

as a solution of (4). It will be shown in Part IV that rt(x) is always positive, hence the

absolute value bars may be dropped.

The expression

T? +
t^+ (•+ —ikct "
Ffl ' WM™ j~ r,(s) ds — ikct^ (18)

with F* an arbitrary complex constant, will then be a solution of (2). In the region to

the left of the variation (i.e. for a; < —xa, by convention) this represents a wave of

amplitude F+ and speed c moving to the right. In the region to the right of the variation

(x > xa), it must represent, in general, two waves, one moving to the right and the

other to the left, each with speed c.

It can be seen by inspecting (12) and (14) that if r, + is a solution of (7), so too

is — r-, + ir2 ; this is, in fact, simply r~. Hence we have a second solution of (2) namely

F'n'itet" exp lik L.ri(s) ds ~ ikct\-

Remarks similar to those above apply to this solution also.

(19)
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The two solutions obtained are independent, the Wronskian of the system f+, f~

having the constant value — 2ik, hence the general solution of (2) is

* = (F+f+ + F-f-)e~ikc' (20)

with F+ and F~ arbitrary complex constants.

Another solution of (2) is

F'f't'"™' = *1— exp ik f r[(s) ds - ikct . (21)
'vrl{£) L Jx. J

Here we have taken x0 = x„ and r' — r[ -f- ir'2 , with r[ and r2 real. This solution repre-

sents, in the region to the right of the variation, a single wave moving to the right.

III. Formulae for Reflection Coefficients. In obtaining reflection coefficients, we

consider solutions of (2) which give a single (transmitted) wave leaving the region on

one side or the other. If this occurs on the left we must have F+ = 0, and the complete

solution is then given by (19). If the single wave moves off on the right, then the ratio

F~/F+ must be such that the left-moving components on the right cancel out. In this

case, however, we can equally well give the complete solution by (21). For equivalence,

p+j+ + FT = F'f (22)

and, differentiating this with respect to x and dividing out ik,

r+F+f+ + r'F'f- = r'F'f. (23)

From these we obtain the complex amplitude reflection coefficient

R^l1 = r+ - r' r
F+ r~ - r' f

(24)
(ri — r0 + i(r2 — r'2) , 1

" - <-r, - r\) + ,'(r, - rj) eXP L" L 'M

which has modulus

(r, — rQ + i(r2 - r'2)

(n + r[) + i(r2 - r2)
(25)IR I =

Since R is a constant, the evaluation may be made at any x.

If the variation is symmetrical about x = 0—i.e.,if n2(x) = n2( — x)—then it may

easily be shown that

r[(x) = ni — x); r'2(x) = -r2(-x). (26)

In particular, at x = 0 we get r[ = r, and r2 = — r2 . Substituting this in (25), we get

I R. | = [1 + m/r\m~U2 (27)

for a symmetrical medium.

It may be noted that formulae (22) to (25) would be valid even if n2 were complex

in the region | x [ < xa
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IV. Approximate Curves for r+ (x). No general solution of the Riccati equation is

known, so we are apparently no further ahead. However, the sort of solution to be

expected can be estimated, to a certain extent, by inspection of the equations (12) to

(14), and this task will be undertaken in the present part. The development is necessarily

lengthy, and has only been outlined here. However qualitative it may be, it does lead

to some general results and does provide a guide for further extension, as illustrated in

succeeding parts. Moreover, since the required curves are shown to be smooth, at least

over the regions of interest, it appears that electronic computers might be used to ad-

vantage in this sort of approach to the problem. (Contrast the actual wave solution

which is, in the main, oscillatory.) The operator D will be used for d/dx throughout

the discussion.

We shall be concerned here primarily with fairly slowly varying media, having

simple curves of n2{x), in which n is negative over some range, say xh < x < xd . A

representation of such a medium is shown in Fig. 1. Media in which n2 is slowly varying

but never becomes negative will be classified as Type I, and will receive only scant

treatment, near the end.

Fig. I TYPICAL MEDIUM TO BE CONSIDERED

We start from the region x < —xa , where rx = 1 and r2 = 0, and proceed to the

right. Since r+ is continuous, no change can occur in either r1 or r2 until one occurs in

Dr2 . Since n2 starts to decrease, we see from (12) that Dr2 must become negative. Then

Z)2r, and Dr, become negative, and r\ decreases from unity. So long as 3(Z)r,)2 >

2rlD2r1 , however, r\ must stay greater than n, as may be seen on eliminating r2 from

(12) and (14). This gives, for the start of the r\ and r2 | r2 | curves the form shown in
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Fig. 2. (We plot r2 | r21 so that the magnitude of r\ and the signs of r2 and Drt may be

shown.)

Before proceeding farther, we might first note two general properties of the r\ curves,

based on (12) and (14):

i) rx will never become zero (if xa is finite) for this would require r2 —> — <», and

hence n2 —» — , a case which has been excluded from the present paper.

-x« r,|r,l

Fig. 2 STARTING CURVES OF r,' AND r,lr,l

ii) if ever Dr\ becomes zero after having been negative, so too will Drx , hence at

that point r2 = 0 and Dr2 > 0, and so n2 > r\ . Hence, so long as r\ remains greater

than n2, it will not have a zero derivative.

For slowly varying media we may expect slowly varying r curves, in which case

we will have r\ ~ n2 until very close to xb , where n2 vanishes. Such a result is, in fact,

~>rirtT~

Fig. 3 POSSIBLE LATER CURVES r," AND r.lrj
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employed in the B.W.K. method where, in effect, rx ~ n (for x < xb) is derived from

the first term of a series solution of (12) and (14), and then employed in (18). Except

in the limit of vanishing variation per wave length (&—>») we cannot know that this

result must be obtained, but the reverse certainly is true: if r, and Drx are very slowly

varying, then n2 is too, and r\ ~ n2. Later curves of r\ and r2 | r2 | may then be like

those in Fig. 3 or, more likely if the medium is slowly varying, like those in Fig. 4 or 5.

■flr.1

Fig. 4 POSSIBLE LATER CURVES OF r,1 AND r.lr.l

Fig. 5 POSSIBLE LATER CURVES OF r,' AND rtlr,l

At any rate, when we come to xh we have n = 0, r\ > 0. Media having Drl > 0

at xb will be classified as Type II while those having Drl < 0 there will be classified as

Type III. There does not appear to be any general way of continuing the curves past
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xb for media of Type II, which we shall therefore drop from our discussion for the

present. Type III can, however, be treated generally, as follows:

As before, there will be no point in the region xb < x < xd where Drt = 0 = r2,

since the property (ii) above applies to Type III media there. This means, then, that

Dr, < 0 and r2 < 0 throughout this region. Moreover, if the medium is sufficiently

slowly varying, r\ will not differ from n2 by very much in the region to the left of xb ,

and hence will be very small at, and to the right of, xb . In fact, it can be shown that

r*Xd

J ri dx < it/2k (28)
xb

for any medium of Type III. (This is easily deduced from the fact that the graph of

the real part of / must be curved away from the x-axis in regions of negative n.) From

this we see that r, must become quite small between xb and xd if k(xd — xb) is reasonably

large, no matter how large is at xb .

Proceeding to the right, we see that if — r\ is less than n by more than the (small)

amount r\ , then Dr, must be positive and —rl must be increasing. So long as n2 is not

increasing, then, — rl cannot be much less than n2 for long. Once —r2 becomes greater

than n2 — r\ it must remain there, at least until this latter starts to increase (near xm ,

the point of minimum n2). All that time Dr2 will be negative, and so —r\ will be de-

creasing. If the gap between — r\ and r2 — rl becomes large, so too will — Dr2 , thus

forcing the gap to diminish (assuming fairly slow variation of n2). Figs. 6 and 7 show

the type of curves to be expected.

Fig. 6 POSSIBLE CURVES OF r,* AND rtlrsl, SHOWING

-r,1 BECOMING GREATER THAN n'

All these considerations hold especially well when the variation is sufficiently slow.

In the limiting case k —>» we will have —> n, r2 —> 0 for x < xb , and rx —> 0, r2 —>

— ] n | for xb < x < xd . As we relax this condition of slow variation, the considerations

above are modified. Inspection shows that this leads to curves such as those sketched

in Figs. 8, 9, 10, and 11. They are, of course, only rough drawings meant to indicate

the sort of curves to be expected; they are not mathematically accurate, and "slow

variation" is not defined.

In most cases of slow variation, the curves can be extended as far to the right as
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Fig. 7 POSSIBLE CURVES OF rf AND r«lrel ,

SHOWING -r,1 BECOMING GREATER THAN n*

xd without too much error. After this point, however, it is impossible to continue by

inspection, for and its derivatives become large. However, we do know that

exp |~ik [ r+(s) rfsj = Aeilc"x + Be~ik (29)

for x > xa . Here A and B are complex constants and, in our case, n = 1. From this

can be derived
Atiknz - B<Tiknx

Aeiknx + Be~

In general (i.e. B 0) this gives oscillatory curves for r, and r2 .

r+(x) = n . (30)
N A .tknx ■ r> —tknx x '

Fig. 8 r,* AND rxlrc I CURVES FOR A VERY SLOWLY VARYING MEDIUM

OF TYPE HI
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Fig. 9 r,' AND r, lrt I CURVES FOR A SLOWLY VARYING MEDIUM OF

TYPE m.

Fig. 10 r,* AND rtlrtl CURVES FOR A SLOWLY VARYING MEDIUM

OF TYPE DI

Actually, there is no need to describe the curves past xm , since the formulae (25)

and (27) can be used at xm itself. We can trace the curves for r[2 and r'2 | r'2 |, working

to the left of xa in a similar way, to the region of the minimum of n2. This gives a com-

plete set of curves for the medium, such as that shown for a typical case in Fig. 12.

Other media will have curves differing in detail from these, but we may take it as a

fairly general result that media having a single fairly wide region of negative n2 will

have rx and r[ quite small, and —r2 and r'2 approximately equal to | n |, at xm .
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Fig. II r* AND r,lr,l CURVES FOR A FAIRLY RAPIDLY

VARYING MEDIUM OF TYPE III

This last statement will be true even for media of Type II, since it can be shown

for them that

/Xd Ti dx < ir/k. (31)
b

If, then, n2 stays negative for long enough, r, must become very small.1 Along with

Fig. 12 CURVES OF r,® r2lr2l, r,'* AND r^lr,1! FOR A FAIRLY SLOWLY VARYING

MEDIUM OF TYPE HI ON BOTH SIDES
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this, Dti must become negative, and the results derived above for Type III media will

become applicable.

In Type I media having n2 slowly varying, we expect the approximation r, = n,

r2 = 0, to be fairly good throughout the entire range, at least if the minimum n2 is not

too close to zero.

V. Approximate Reflection Coefficients, i) Type I media, minimum n2 > 0: So long

as the approximations r, ~ n ~ r[, r2 ~ 0 = r2 are good, (25) gives | It \ ~ 0. If these

approximations break down, as will happen in rapidly varying media, the resulting

reflection coefficient may become appreciable.

ii) Type I media, minimum n2 = 0: It can be seen that, under certain circumstances

(e.g. r, ~ — r2 , r[ ~ r'2 , Dr2 ~ 0 ~ Dr'2 at xm) we will obtain | R | = 1 V/2. This is a

result frequently quoted for this case (e.g. Rydbeck [13]), but as can be seen, it is by

no means general. An example will be given (Part IX, Fig. 20) in which it completely

breaks down.

iii) Media having a broad region of negative n2: We will have, at xm , —r2 r, >0,

r2 r'x > 0, and hence \ R \ ~ 1. We thus get the expected result, that such media

are almost completely reflecting.

iv) Symmetrical media: On integrating (14) and introducing the result into (27) we

obtain for symmetrical media

R. = [1+rlkCXP{4fc/-*/24] • (32)

This gives a form which may be compared with the common (approximate) formula

(33)I R | = ^1 + exp j—2k J | n \ dzjj

which becomes, for symmetrical media

I ft. I = 1 + exp | — 4& J | n | efojj

This was originally developed by Gamow [14] by considering discontinuous media, and

more recently by the "good path" method [6] [13], If nz is sufficiently negative for a

sufficient range of x, both methods give j Rs \ = 1, as in (iii). However, for rapidly

varying media which are not too thick, (32) [or in general, (25)] and (33) may give

quite different results.

v) Thin media of Type II: The reflection coefficients for such media may differ

considerably from the "good path" result, and so somewhat surprising values may occur.

An example is given in Part IX, Fig. 21.
VI. Accurate Reflection Coefficients. Regardless of the accuracy or inaccuracy of

the discussion in Part IV when applied to general cases, the formulae (25) and (27)

can be used for specially constructed media as follows:

Use any function p1(x) which equals 1 for x < —xa, and remains positive and has

a continuous first derivative everywhere. Define

P2{x) = ikfxlogpi (34)
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and construct a medium for which

n2 = P\ - pi + | £ P2 (35)

using any specified k.

For this medium, at the frequency kc/2-ir, we will have

ri = Pi ) r2 ~ Pi (36)

exactly. To satisfy the conditions (5) on n, p{ would have to have a certain form for

x > xa . This difficulty can be avoided, however, by using another function p[ which

equals 1 for x > xa , and remains positive and has a continuous first derivative every-

where. The medium to be used will have n2 given by (35) for x < xe and by a similar

relation in p[ , p2 for x > xe , x, being a point where the two relations give the same

value. (The existence of at least one such point is a further condition, though we may

now remove the restrictions on p, to the right, and those on p[ to the left, of x, .)

We should then be able to derive the exact reflection coefficient for the medium so

constructed, at the frequency kc/2ir. Using the discussion of Part IV as a guide, one

could obtain a specified form of medium. For media with large regions of negative n2,

it is easier to choose Pi and p[ over part of the range only, and choose p2 and p'2 over

the remainder (xb < x < xd). Examples are given in Part IX.

It should be pointed out that this technique is accurate in all cases. The variations

may be as rapid as we please, and n2 need not be restricted by the conditions imposed

in this paper (see, for example, Fig. 26, Part IX, where n ^ 1 on the right). Even com-

plex n2's may be obtained, if proper modifications are made. There are certain dis-

advantages to the method, however:

i) The reflection coefficient is only known for the frequency used in the construction.

For nearby frequencies we may expect little change, but we have no way of estimating

the amount. In some cases (see Part VIII) the frequency is very critical in determining

reflection. However, if we choose functions to give curves as in Fig. 12, we can be fairly

sure that for higher frequencies the curves approach the limiting values mentioned

before (aside from dispersion effects).

ii) The exact form of the medium, i.e. n = n(x), is not known until after the con-

struction is made. However, with proper judgment, we could construct almost any

medium desired, at least approximately.

iii) In general, dn2/dx will be discontinuous at x = xr . This is not a serious fault,

however, and need not occur if care is taken in selecting the p functions.

VII. Non-Reflecting Media. One of the primary values of the method just developed

is that it shows the existence of non-reflecting media (for any given frequency) even

when n2 is considerably negative over a considerable distance. To see this, we note

that if Pi is taken so it equals 1 for x > xa , then we may take p[ = Pi , hence r, = r[ ,

r2 = r'2 , and hence j R | =0. Using the great freedom of choice of pi allowed, we can

construct a great variety of media for which the reflection coefficient is zero (for the

frequency used in construction). This applies to rapidly varying media as well as slowly

varying ones. The possibility of non-reflecting media was noted by Rayleigh [1], based

on similar reasoning, but not developed by him nor applied for cases of negative n2.

If we choose p, so that p2 is appreciable when px = 0 we can get a medium with n

appreciably negative (and for as great a distance as we wish) which has the property



22 C. 0. HINES [Vol. XI, No. 1

of non-reflection (for the frequency used). Several non-reflecting media are sketched in

Figs. 13, 14, 15, and 16, the last two being of this type.

All non-reflecting media of the types considered in this paper must have

f r2(x) dx = 0 (37)
»' -la

in order that (xa) — r1(—xa). Since regions of negative n usually arise due to | r2 |

becoming large, we can expect that a non-reflecting medium having one region of

negative n2 (due, say, to — r2 becoming large) will have another one (due to +r2 becoming

Fig. 13 A NON-REFLECTING MEDIUM (FOR A CERTAIN FREQUENCY). r,f CURVE

PRESCRIBED

Fig. 14 A NON-REFLECTING MEDIUM (FOR A CERTAIN FREQUENCY), r,* CURVE

PRESCRIBED
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Fig. 15 A NON-REFLECTING MEDIUM (FOR A CERTAIN FREQUENCY) WITH TWO

REGIONS OF NEGATIVE n*. r,* CURVE PRESCRIBED

-Xo  — 

r.lr-l

Fig. 16 A NON-REFLECTING MEDIUM (FOR A CERTAIN FREQUENCY). WITH A

REGION OF NEGATIVE n*. r,e CURVE PRESCRIBED

large) or else one in which n2 = 0 for a long distance (due to r2 being positive but small

for a long distance, rx growing only slowly). The two cases are illustrated by Figs. 15

and 16. In the case of very thin regions of varying n2, in which r, and r2 may vary

rapidly, these results need not follow (as, for example, Fig. 21, Part IX).

For media which do not satisfy (5), equation (37) and the results derived from it

need not hold in cases of non-reflection. This is illustrated in Part IX, Fig. 26.

VIII. Reflection from Media with Two Regions of Negative n2. General media

having n2 negative in two separated regions cannot be treated by formulae (25) and

(27) directly, because of the difficulty of extending rt , r2 , r[ , and r'2 curves to give

values at any one point. Useable formulae for this type of media can be obtained by

the following extension of the previous methods:
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Introduce two more solutions of (7)

p+(x) = pi + ijh ; p~(x) = -pi + ip2 (38)

where p, and p2 are real, such that

Pi — In I) Pi = dp2/dx = 0 at x — xc (39)

where xc is the point at which n2 is a maximum (>0) between the two negative regions.

Curves of pi and p2 may be drawn by the same reasoning as used for rt and r2 , at least

if | n(xc) | is not too small. This gives curves such as those shown in Figs. 17 and 18.

By introducing corresponding solutions of (1), and proceeding as before, we get the

complex reflection coefficient

R - — exp 2ik f" r, 4,1 A ""P [~2<h ^1 ~ B
L J-** J C exp [ — 2ik dx] — D

(40)

Fig. 17 CURVES FOR A MEDIUM WITH TWO REGIONS OF NEGATIVE n*

where

A = (r+ - p*)x.x,(p~ — r')x.x%

B = (r+ — p~)x.x,(p+ - r')x-x,

C = (r~ - p+)x.Xl(p~ - r')x.x,

D = (r~ - p~)t-Xl(p* - r')x.x,

and Xi and x2 are any two values of x. For purposes of evaluating (40) we would take

xx near xm , the point of minimum n on the left, and x2 near x„ , the point of minimum

n2 on the right.
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Fig. 18 CURVES FOR A SYMMETRICAL MEDIUM WITH TWO REGIONS OF NEGATIVE n*

In slowly varying media, with sufficiently deep minima of n2, we will have —r2 » rx ,

p2 » Pi at xm , and r'2 » r[, — p2 » -py at xn. Taking Xi = xm , x2 = xn , as we shall from

now on, we find A ~ B ~ C ~ D and hence, in most cases, \ R \ ~ 1, the expected result.

However, if two conditions are fulfilled, namely

\A | = | B | (41)

<Pa — 2k J pj dx = <pB — 2qir (42)

then we will have, from (40), | R \ =0. Here <pA — phase angle of A, <pB = phase angle

of B, and q = 0, ±1, ±2, ■ • • .

If the medium is symmetrical, | A \ = \ B j for all frequencies, as can be shown by

choosing xx = —x2 and comparing the quantities involved. The second condition, (42),

will probably be fulfilled for a whole succession of frequencies. If the medium has curves

like those of Fig. 18, Where —r2(xm) » r,(a;m) etc., then <pA = cpB ~ ir nearly independently

of frequency. Thus | R \ will vanish every time 2k /*[ p, dx increases by 2ir as k varies.

It can further be shown that, for such a medium, the band width Ak of passed waves

(those having | R | < 1/ \/2) is given by

**/,>*-C^L- (42)
On the assumptions made in developing this formula, Ak will be a very small quantity.
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These media act as very narrow band pass filters, then. For such a medium, a graph

of | R | against 2k px dx would appear much like that sketched in Fig. 19.

For media having the minimum of n2 not very deep, the maxima of | R | would not

be so close to 1, nor would the dips in the curve be as narrow. In a plot of | R | against

k, some distortion of the graph will occur. This comes from the change of p, (x) with k,

the changes in <pA and <pB with k, and a possible dispersion n2 = n2(k).

Although these results have been derived for symmetrical media, there is no reason

to believe that non-symmetrical media need behave much differently. Possibly | R |

would not become zero in most cases, even for selected frequencies, but it would probably

become small for a sequence of frequencies, with intervening values near 1. Certainly

we can construct non-symmetrical media for which there is no reflection, and in such

cases we might expect a marked decrease in | R | for a whole sequence of frequencies.

IRI

-I  r- yii 

fXl)
Zkl p,<*' d*

2»1T 2(fl+l)7T 2[g+2)7T 2(5+3)7T 2(5+4)77-

Fig. 19 REFLECTION COEFFICIENT FOR A SYMMETRICAL MEDIUM

The condition (42), and the very nature of media with two regions of negative n2,

remind one of the theory of the Fabry and Perot interferometer. This suggests as the

explanation of perfect transmissions through these media a process of multiple reflection

with subsequent interference. It further suggests that the phenomenon will occur to

some degree even if the media are somewhat absorbing. Comparison should also be

made with the problem of periodically varying media, as treated in Mathieu's equation,

where a sequence of bands may be passed. (See Brillouin [15].)

IX. Accurate Reflection Coefficients in Particular Cases. Fig. 20a shows the macro-

scopic appearance of a symmetrical medium having minimum n2 = 0. This was drawn

on the basis of an assigned r\ curve for | x \ > 10, using k = 100 (i.e. Avac = .063 units).

This figure actually shows n2 for three media which differ almost inappreciably from

one another in the region | x | < 3 and are identical outside this region. For \ x\ <10,

n2 is derived by specifying r2 (which is continuous, at x = 10, with the r2 curve outside).

The three media, with the corresponding r2 curves, are shown over the range — 6 <

x < 0, on a greatly enlarged scale, in Figs. 20b, c, d. They have values of | R | equal

to 1/ y/2, 0, and .92 respectively. It is evident from this that very slight changes in

the form of n2 can change the reflection coefficient remarkably, and that 1 / \/2 is by

no means a general result for these media.
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Fig. 21 shows a thin, fairly rapidly varying medium, having n negative in one

region only, and having zero reflection for the frequency used in construction. The

curve of r2 (not shown) was specified, and k taken as 1 (XTao = 6.3 units). In coming

from the left, it can be seen that this medium is of Type II and that Dr, remains positive

Fig. 21
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throughout the region of negative n2. In this case, Jldb r, dx = 0.34 which is less than

7r, in agreement with Eq. (31). The reflection coefficient modulus, based on the good

path method, is 0.79, which is in obvious disagreement with the correct value, zero.

Fig. 22 shows, on the right, one half of a symmetrical medium, and on the left, the

curves of r\ and r2 | r2 | from which it was constructed. Here k — 10, Xvao = 0.63 units.

The reflection coefficient for this wavelength has modulus which differs inappreciably

from 1 when calculated by either (32) or (33). The transmission coefficient has modulus

approximately equal to e~65; the good path method gives e~69.

Fig. 23, shows similar curves for another medium. Here, k = 1 and X„„„ = 6.3 units

for the construction. For these waves, | R \ = 0.954, while the good path method gives

| = 0.998. The medium is, of course, rapidly varying and "narrow" relative to the

Fig. 22

wavelength used. Figs. 21 and 22 may be compared to see how closely the r curves

"stick to" the n curves in the two cases, "fairly slowly" and "fairly rapidly" varying.

i-LO

Figs 24a and b show curves for a medium such as occurs in ionospheric work. The

value of k used was 1000, corresponding to Xv,c = 0.0063 units. For an isonosphere

120 km. thick, this corresponds to = 63 to, or a frequency of 4.8 mc/s. Reflection

is essentially complete here. With such large values of k (for media of this thickness)

there is practically no deviation of the r\ and r2 | r2 | curves from the limiting forms
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mentioned previously, and almost identical curves would be obtained with any k of

this or greater order of magnitude. In the case of the ionosphere, of course, the medium

is dispersive and there would be a change of the n2 curve as k is changed. Inter-modal

coupling must also be included before a complete solution is obtained in this problem.

-i.o

Fig. 24 a
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Fig. 25 shows, on the right, half of a symmetrical medium having two regions of

negative n2; on the left are curves used in deriving this medium. A value of k = 10

-1.0
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was used (Avao = 0.63 units), but similar r\ and r2 | r2 | curves would be expected for

any k near this. Here J *2 Pi dx ~ 0.36, and at xm, rt ~ r2 ~ 0.4, pi ~ t~°'7k,

and p2 ~ 0.4. These approximations will be fairly good for all k near 10. Then <pA ~

<pB — ir as stated before. There will then be no reflection of waves having k ~ 8.7,

17.4, • • • (~ 2.8 qir with q = 1, 2, • • •)• The band widths passed are given by Ak ~

4e~1"97(0.8)2(0.36). For k = 8.7 this is Ak = 1.1 X 10~6 and for k = 17.4 it is Ak =

7 X 10_u. These are obviously very narrow bands.

Fig. 26 shows a medium which has n2 negative only once, and which has n2 = 1

on the left and n2 ~ 0.003 on the right. There is no reflection for the waves used in

construction, which had k = 1 and Xvac = 6.3 units.

Fig. 26

X. Mass Waves. In quantum theory, an equation of the form of (1) comes from

eliminating t from

.. h2 d2^ ■ ,.„s

,hTt-~ 2S"5?+y(l)* (43)

where h is Planck's constant divided by 2t, m is the mass of a particle, and V(x) is a

potential energy field which varies only with the x coordinate. We set

* = (44)

where E is to be the (constant) total energy of the particle. This gives

0 + YL\E- V(x)]f = 0. (45)

The forms of (45) and (4) are identical; the solutions will be identical if we set

ZbV = [E - F(x)]2m/h\ (46)

The factorization of the right hand side into k2 and n2 parts may be done arbitrarily,

but the k2 part must be independent of x if our previous equations are to hold. If V = 0

for | x | > x„, then the most convenient association is

k2 = 2mE/h2; n2 = 1 - V{x)/E (47)

since this gives n2 = 1 for | x | > xa as before. The other restrictions previously placed

on n2 correspond to F being a real continuous function of x which is non-negative be-

tween —xa and xa . This is then, the potential barrier of quantum mechanics. The cases

of maximum F being less than, equal to, or greater than, E, correspond to minimum

n being positive, zero, or negative, respectively.
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The results of all the previous parts of the paper may now be applied to the present

problem. One modification only is important; we are usually interested in the behaviour

of the solutions as E is varied, keeping m and V fixed. This corresponds not only to a

variation in k but also to a variation in n—i.e., the media considered are dispersive.

Physically, the results of this paper when applied to mass waves indicate that streams

of particles of the proper energy can get through some potential barriers without any

reflection. In the case of double barriers, a whole spectrum of such beams could pass.

It may be possible to apply this result to obtain sharp ranges of velocities for such

experiments as Thomson's e/m determination.

Since the radial wave equation can be put in the same form as (45), the methods of

the present paper can be applied in radial problems. For example, exact eigenstate

conditions can be established, in terms of r(x), for diatomic molecules. The potentials

occurring in such problems do not lead to the type of n2 curves considered in this paper,

however, so the matter will not be pursued here.

XI. Remarks. The results of this paper are in general agreement with those of other

methods. However, by showing that unexpected reflection coefficients may occur, they

contain a warning against using the formulae of the other methods in cases where they

have not been proven applicable, such as media with two regions of negative n2, and

media having roots of n in the complex plane near those on the real z-axis (see [15]).

This investigation was carried out at the Radio Physics Laboratory of the Defence

Research Board, Ottawa. The problem was proposed by Mr. J. C. W. Scott, whose

suggestions and encouragement are much appreciated.
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