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NOTE ON THE ELASTIC DISTORTION OF A CYLINDRICAL HOLE

BY TANGENTIAL TRACTIONS ON THE INNER BOUNDARY.*

By Sisik Chandra Das (Chandernagare College, India)

Introduction. Elastic distortion of a cylindrical hole by localized hydrostatic pressure

has been discussed by H. M. Westergaard1 and C. J. Tranter.2

In this paper a few problems of elastic distortion of a cylindrical hole by tangential

traction on its inner boundary are discussed. The first case considered is concerned

with the problem of an infinite elastic plate having finite thickness with a cylindrical

hole acted on by localized tangential traction on the inner boundary, the two faces of

the plate being free. In the second case one face of the plate is supposed to be fixed

and the other free, while the hole is acted on by uniform tangential traction throughout.

In the last case a localized tangential traction is supposed to act over a narrow band

on the inner boundary of an infinitely long cylindrical hole in an infinite elastic solid.

The solutions in the first two cases are obtained in terms of infinite series while in

the last case it is expressed as an infinite integral.

1. Method of solution. We take the axis of the cylindrical hole as the axis of z.

Using cylindrical co-ordinates and assuming u = w = 0 and v to be independent of 6,

we have
f)v

e = 0, 2 wr =
dz

(i.i)

2we = 0, 2w, = ~ (rv)

and

Or &0 Ttz

Two equations of equilibrium are identically satisfied and the third takes the form

S + ̂ -t + S-O (1.3)
dr r dr r dz

One particular solution suitable for the problem is

f = (1.4)

Also substituting

we get

dr'' ' r dr V" ' r'

where V is a function of r only.

v = V cos kz or V sin kz (1.5)

3'F + l^-K:iV = 0 (,.c)

*Received April 4, 1952.
'H. M. Westergaard, Iiarman Anniversary Volume, 1941, p. 154

2C. J. Tranter, Quart, of Appl. Math., 4, 298 (1946).
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As a solution to the above we take

V^c.K^kr) (1.7)

where Kx is the modified Bessel function of the second kind of degree one.

We now consider the following cases.

2. The cylindrical hole in a large plate of finite thickness with a distribution of tan-

gential traction over a narrow band. We take the plate to be of thickness 2L and the

surfaces defined by z = ±L. Both ends of the plate are free and the tangential traction

is localized within the zone z = ±/i.

The boundary conditions to be satisfied are

fb)
1) t6, = G — = 0, when z = ±L (2.1)

oz

and 2) t,9 = — Si , when | z \ < h

= 0, when [ z | > h

Assume

and

Hence

2 GLr frl n tv GK2(nira/L)

which is evidently convergent as for large values of x

EM = !
K,(x)

(2.2)

A 00

V = — + E CtK^kr) cos kz (2.3)

Then from (1.2) we have

7,8 = ^ - £ ckkGK2(kr) cos kz (2.4)
T 1

where iv2 is modified Bessel function of the second kind of the degree two.

From the condition (2.1) we get

k = ™ (2.5)

where n is any integer.

Also the conditions given by (2.2) will be satisfied if

_ «1 §A
0 2G' L

r — sin (nirh/L) , .

k ~ n2ir2GK2{mra/L) 1 j

S,n2h , 2LSi sin (nirh/L)Ki(nirr/L) cos (nirz/L) /n nx
V - cr,T, + 2-, (nnrr,/T\ ^
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3. The cylindrical hole with uniform tangential traction in a large plate one of

whose faces is fixed and the other free. Here we take the plate to be of thickness L. The

free surface is given by z — L, the face given by z = 0, being fixed. The uniform tan-

gential traction is supposed to act throughout the hole.

The boundary conditions to be satisfied are.

1) v = 0, when 2 = 0 (3.1)

r)j)

2) r9z = G — = 0, when z = L (3.2)

and 3) Tr„ = — S, when 0 < z < L (3.3)

at the cylindrical surface r = a.

Assuming

co

v = ^2 DtK^kr) sin kz, (3.4)
k-1

we get from (1.2)

Tr) = — X DtkGK2(kr) sin kz. (3.5)

We find that the condition (3.1) is evidently satisfied and condition (R.2) will be satisfied

if

, (2n + l)x n- 2L  (3'6)

where n is any integer.

The condition (3.3) will be satisfied if

SSL

D" = (2 n + l)VG7v2((2n + l)*a/2L) (3-7)

Hence

8<SL/^i((2n + \)irr/2L) sin ((2w + l)ra/2L)

V ~ h (2n+ \)\2GK2{(2n + l)7ra/2L) (3"8^

which is evidently convergent.

4. The cylindrical hole in an infinite solid under a tangential traction over a narrow

band. We now consider the case of an infinite solid having an infinitely long cylindrical

hole acted on by a tangential traction which is operating over a narrow band of breadth

2 h.
The boundary conditions here are

Trg = — Si when \z \ < h

(4.1)
= 0 when | z | > h

at the surface of the cylinder r = a.
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The conditions (4.1) can be expressed in the form

, x " —2St f" sin ht cos zt ,, ,,
(Tr,)r-a =   /    dt (4.2)

We assume

v = f c(t)Ki(tr) cos zt dt (4.3)
J 0

as a solution of the equation of equilibrium (1.3) where c(t) is a function of t only.

The boundary condition (4.2) will be satisfied if

^

Therefore

r°° 2<S'i sin hi cos ztK,(tr) dt ..

V ~ J0 t\GlU(ta) * ( j

In conclusion I offer my sincere thanks to Dr. B. Sen for his help in the preparation

of this paper.

ON CERTAIN SOLUTIONS OF A PENDULUM-TYPE EQUATION*

By GEORGE SEIFERT (University of Nebraska)

Introduction. In the study of the oscillations of a synchronous motor around its

average angular velocity, a differential equation of the following type, the so-called pen-

dulum-type arises [1]:

§ + m f = (i)
where f(6) and g(fi) are functions of period 2 x in 6.

It has been shown [2] that in the case where f(6) = a > 0, a constant, and g(6) =

P — sin 6, where /3 is a constant such that 0 < /S < 1, there exists a constant ac —

ac(|8) > 0 such that if a < ac , eq. (1) will have a solution 6{t) such that if d'(t) =

2/(0), then y(G) = y(fi + 2x) for all t, while if a > ac , no such solutions exist. Following

Vlasov [3] and Minorsky [4], we call any such solution of eq. (1) a periodic solution of

the second kind. Physically, such a solution corresponds to a subsynchronous level of

performance of the motor described by eq. (1). It is known also [5] that questions of

stability of solutions of eq. (1) with respect to the points of equilibrium of (1) involve

questions of existence of such solutions.

The purpose of this note is to exhibit a set of explicit conditions on f(6) and g(6)

which insure the existence of periodic solutions of the second kind for (1). Since it has

already been noted [5] that if f(6)> 0 and either g(d) < 0 or g(6) > 0 for all 6, there

will exist such solutions for eq. (1), we restrict ourselves to the case where f{6) >0 and

the equation g(9) = 0 has a finite number of roots in 0 < 9 < 2x.

*Received April 18, 1952.


