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INFINITE MATRICES ASSOCIATED WITH DIFFRACTION BY AN APERTURE*

Bt

WILHELM MAGNUS

New York University

1. Introduction and summary. As an example of their "variational method",

LEYINE and SCHWINGER [1] investigated a boundary value problem which arises

from the diffraction of a plane scalar (acoustical) wave by a plane screen with a circular

aperture. It is equivalent to the problem of finding the field of a freely vibrating circular

disk. A full discussion of the physical problems was given by Bouwkamp [2]. Let z,

p, 6 be cylindrical coordinates and let z = 0 be the plane occupied by the screen. Let

z — 0, 0 ^ p < a define the aperture (or the vibrating disk). The diffracted field is

given by a function u which satisfies V2m + k2u — 0 (with a constant k) everywhere

except for z = 0 and at infinity satisfies a Sommerfeld radiation condition. For z = 0,

u must satisfy the "mixed" boundary conditions u = 0 for p > a and du/dz = v0 with

a given constant value v0 for 0 ^ p < a. These conditions determine u uniquely. For

2 = 0, 0 ^ p < a, u = $(p) becomes a function of p only, and if i'(p) is known or even

if only Co$(p) with an undetermined constant factor f„ is known, u can be determined

everywhere; see formulas (A.l), (A.2), (A.3) in [1],

Levine and Schwinger [1] show that the ratio of the energy transmitted through

the aperture to the energy incident on the aperture is the imaginary part of the complex

transmission coefficient T*, which is a quotient of two integrals involving $(p) quad-

ratically. As a functional of <J>(p), T* becomes stationary for the correct function $

which determines u. Levine and Schwinger find approximate values for T* by expanding

first <E>(p) in an infinite series of auxiliary functions {.see 3.1 and 3.2) with coefficients

Dm . Then T* becomes a linear form in the Dm (see 3.10), and the unknowns Dm are

determined by an inhomogeneous system of infinitely many linear equations with a

coefficient matrix L (see 3.4, 3.5). In [1], these equations are solved "section wise", using

the first I = 1, 2, 3, • • • equations to determine the first I unknowns. All quantities Dm ,

T*, L are power series in p = ka/2, and Levine and Schwinger compute the first coeffi-

cients of the expansion of T* in a power series in fi which were determined independently

by Bouwkamp [2], who used spheroidal wave functions.

It will be shown that the algebraic properties of the matrix L make it possible not

only to find approximate values for T* as in [1] but also to determine 4>(p). This is due

to the fact that L factorizes in a product L(0)S,where L(0) is the matrix for the static

case k = 0 and where >S can be inverted by solving finite recurrence relations. The

details are stated in lemma 1 and theorem 1 of section 3. Lemma 2 gives additional

algebraic relations. Problems of convergence and uniqueness are settled in section 5.

These depend largely on an investigation of the properties of Li0) which is carried through

in section 4. There it is shown that in the limiting cases k = 0 and k = °° the matrices L(0

and of the linear equations also arise from a problem of moments. This also makes

it possible to prove that the variational method for the calculation of the transmission
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coefficient will work even for k = <» where the linear equations for the Dm do not have

any solution at all.

2. Notations. The elements of (infinite) matrices are denoted by subscripts n,

m = 0, 1, 2, • • • where n denotes the rows and m denotes the columns. A vector with

components xm is denoted by {xm}. We also use the notations

(a)„ = r(a + n)/r(a) = a(a + 1) • • • (a + n — 1); (a)0 = 1, (2.1)

(2-2>

where r denotes the gamma function and F denotes the hypergeometric series. For

results needed here see Whittaker and Watson [3] and Bailey [4],

3. Algebraic properties of the linear equations. Let

Hp) = aCo Z xm(l - p2/fl2)m+1/2 (3.1)
^ m-0

be the expansion of the field $(p) in the aperture in terms of powers of 1 — p I a ■ Here

C0 denotes an undetermined constant and

-\axm = Dm (3.2)

where the Dm are the unknowns used by Levine and Schwinger [1], The linear equations

for the xm as obtained from the variational method can be written as follows:

Let p, q = 0, 1, 2, • • • and let L(2p\ Z/2<,+3> be infinite matrices with elements ,

CV3) defined by

C = (-D'TinA(n, m, p)/B(n, m, p), (3.3)

C+3) = i(~l)V/2A(n, m, q + 3/2)/B(n, m> q + 3/2), (3.4)

where, for any values of n, m, t

A(n, m, t) = r(n + 3/2)r(m + 3/2)r(n + m + 2t + 1),

B(n, m, t) = 4r(i + l)r(n + t + l)r(m + t + l)r(n + m + t + 5/2).

Let L be the matrix

L = Z P'L™ + E L(2,+3), (3.5)
p-0 Q—0

the general element ln,m = ?„,m(/3) of which is a power series in /? = \ka. Then

E k.mxm = (n + 3/2)-1. (3.6)
m-0

Let £ denote the vector with the components xm and let £<r>, r = 0, 1, • • • be the vector

with the components x'„r) where

Zfi'xL". (3.7)
r-0

Let rj(0) denote the vector with the components 1 /(m + 3/2). Comparing the coefficients

of /3r, r = 0, 1, • • • , on both sides of (3.6) we find

L(0)£<0> = ^ = q_ (3.8)
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and, for r = 2, 3, 4, • ■ • :

L<0)£(r> + L(2,f(r-« + . . . + Z/r,£<0) = 0. (3.9)

If

T* = E xm/(™ + 3/2), (3.10)
m-0

the transmission coefficient T becomes

T = /3/2ImT* (3.11)

where Im denotes the imaginary part. We shall now show that L<0) is a common left

hand factor of all the matrices L{2v\ L<22+3), such that the right hand factor is a bounded

matrix.

Lemma 1. Let p — 1, 2, 3, • • • and q = 0, 1, 2, • • • , and let S'2v) = (s""^) and

g(2a+3) _ (s<^+3)) })e ifre matrices defined by

si™ =0 if

sl2l+3) = 0 if
(3.12)

and otherwise

s™ = (—1 )vG{n, m, p)/H(n, m, p), (3.13)

s»?r3) = »(-l)'<?(«, m,q + 3/2)/H(n, m, q + 3/2), (3.14)

where, for any values of n, m, t

G{n, m, t) = (—t + 3/2)„r(2i — n + m)T(m + 3/2),

H(n, m, t) = r(< + l)T(t)T(t + m - n + 1)T(* + m + 3/2)(3/2)„ .

Then

L(S" = L<0)S(2p), L(20+3> = z/0,S(2*+3). (3.15)

Proof: The element in the n-th row and m-th column of L(0>S(2v> is

V£ (-1)' r(w + 3/2) T(m + 3/2) v
4 p\(p — 1)! n\ T(m + p + 3/2) .

where, because of (2.1) and simple properties of the Gamma function

(n + H) T(r + 3/2) (-p + 3/2), T(2p + m - r)

t-i n r(n + r + 5/2) (3/2), T(p + m - r + 1) l ;

_ n!T(2p + m)r(3/2) ^ (n + 1), (3/2 - p)r (-p - m),

(p + m) !r(n + 5/2) ^ r! (n + 5/2), (1 — m — 2p),'

The sum in (3.18) can be computed by using Saalschuetz's formula (cf. Bailey [4] for

a simple proof) which can be written in the form

y- (g)r(b)r(-k)r   (c - d)k(c - b)k

7?0 r!(c),(l 4- a + b — c — k)r (c)*(c — a — b)k'

(k = 0, 1, 2, ••• ;c ^ 0, -1 - 2, ••• -k - 1; 1 + a + b - c ^ 1, 2, • • • , k)
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Taking a = n + 1. h = -p + 3 2, t = o 2 + ?'■ = p + m, (3.19) gives for

(3.17)

y = wlr(2p + (3 2; + P + !)..» rg 2Q)
(p + m)\Y(n + 5'2) (n -+• o 2)m+p(p)m+v

From (3.20) and (3.16) it follows that Z.up = L 0!> The proof of L^"*3) = ^-°',S~"!'+3>

follows by the same method.

The elements of the matrices are zero except for those in the first a rows.

This is not true for the S(2p' but the following lemma shows that S12"' is a polynomial

in (Sl2> apart from right hand factors which are either the identity or of the type of

the S(2a+3).

We have:

Lemma 2. Let p, t = 1, 2, 3. • • • and let R ' 6c the matrix for which the element in

the first row and m-th column is

(-1)'*1 r(m + 3/2)T(2< + m + 1) „n
(t - 1/2)/!(< - 1)! T(m + t + 3/2)(< + m + 1)! ( '

all other elements of R(t) being zero. Then

Sa}Sa" ~ ! * 1. Si2t+2) = Rln, (3.22)
1 A t

S«>+2, = <£ (_2),+1[(_< + l/2)J1+1/( — 1 - (3-23)

where, for n — t, Rm denotes S'2). In general,

Q«.)«,(.» (* + r(3/2)r(-/ - p 4- 3^
5 6 " p!<! r(-p + 3/2)r(-< + 3/2' 6 (3-4)

is a matrix in which all elements arc zero except those in the first p rows.

The proof of lemma 2 follows again from Saalschuetz's formula. We have now:

Theorem 1. If the equations

L(0>£C0) = 7/ (3.25)

have a solution, then all the vectors £(m) are determined by £<0) and by the relations £(1) = 0

and the recurrence relations

- Swf3) - ••• - Str,£(0>. (3.26)

In the particular case where

r, = „(0> = (2/3,2/5,2/7, •••), (3.27)

we have

£!0) = (S/V, 0, 0, 0, • •), (3.28)

and at most the first r + 1 components of £(r> are different from zero. £<0>, • • • , £<r) are the

solutions of the original system (3.6), if we use the first r + 1 equations for determining the

first r + 1 unknowns and thereby neglect all terms involving the higher powers of /3 from the

r-th power onwards. $<0), • • ■ , £(r> also determine the cxact values of the first r + 1 coefficients

of the expansion of T* in powers of p.
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The proof of theorem 1 follows immediately from lemma 1 and in particular from

the fact that the S'2"', S'2'J'31 involve many vanishing elements. The uniqueness of the

£(r), and the existence of the x„, (at least for sufficiently small values of /3) will be proved

in section 5.

4. Limiting cases for the matrix L. Let

P(t) = l\t + 3/2)/T(t + 1), Q{t) = r(* + 5/2)/r(< + 1). (4.1)

Then Theorem 1 states that the equations

X) = hn (n = 0, 1,2, • ■ •) (4.2)
m = 0

can be solved by formal (i.e. not necessarily convergent) power series in /3 if the equations

4L<0>£ s WnP{n) Z xmP(rn)/Q(ri + to)} = {4hn} (4.3)
V m-0 J

have a solution xm = xl0>. We shall investigate (4.3) together with the limiting case

/3 —>oo. Levine and Schwinger [1] have shown that then (4.2) tends towards the system

of linear equations

12 xm/(n + m + 2)| = n{hn[, (n = 0, 1, 2, • • •) (4.4)

where ^ is a constant.

We have to define first the linear space of admissible solutions xm from the nature

of the problem. Since (3.1) is supposed to define the field in the aperture, and since

the field cannot have a singularity in the center of the aperture, we must assume that

Km £ xJX ~ 6)" (4.5)
«-0 m-0

exists. Since the original system (3.6) was set up merely in order to define the trans-

mission coefficient, we shall assume that

i; xj{m + 3/2) (4.6)
m-0

converges. This implies, that

E (4-7)
m = 0

converges for | z ] <1 and therefore that the xm actually define the field in the aperture.

Then we prove first:

Lemma 3. If the vector £ with the components xm satisfies (4.5) and (4.6), then the

operators L<0) and L{°°' are defined for £ in the sense that the sums in (4.3), (4.4) converge

for n = 0, 1, 2,

Proof: Let Q(i) be defined as in (4.1) and let

rm = Q(m)/Q(n + to), <ym = xT/(r + 3/2). (4.8)
r-0

Then the partial sums of the series in (4.3) are

E Trxr/(r + 3/2) = ^ (rT — Tr+l)ar + Tmam (4.9)
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where

2rr+I - 2rr = 3nP(r + 1 )/{Q(n + r)[n + r + 5/2]}. (4.10)

Since the | un | are bounded and 51 >■ \ tt — rr+1 | converges, the sums in (4.3) also con-

verge. The proof for the convergence of the sums in (4.4) is even simpler.

Theorem 2. If the equations Lm£ = {/tnJ orL<oa)f = {/;* j have a solution £ = {xl"'} or

£ — IxlT' { satisfying (4.5) and (4.6), then the integral equations

f' /(»)(1 - y)1/2(l - vz)" dv = 4tt-i/2 £ z"h,n\/(3/2)„ , (4.11)
»'0 n = 0

I f*(v)v( 1 — vz)'1 dv = h*z", (4.12)
Jo n-0

have analytic solutions

M = E^l0,r(m + 3/2)/m\, f*(v) = £ x^vm. (4.13)
m—0 m=0

The solutions are unique and they also solve the problems of moments

f f(v)( 1 - v)l/V dv = 4ir~1/2/i„n!/(3/2)„ , f' f*(v)vn+1 dv = h* . (4.14)
J o Jo

The integrals in (4.11) (4.12) are defined by

f = lim [' (4.15)
Jo e->+0 J0

Since a formal expansion of the left hand sides of (4.11) and (4.12) leads to the linear

equations L(0)£ = {hn} and L(°"j = {h*\, it has only to be shown that, under the as-

sumptions made about the xm , such an expansion is legitimate. It suffices to prove that

. i-«

lim / f(v)( 1 — v)1 7 V dv = lhnnl/T(n + 3/2) (4.16)
e—0 Jo

where now f{v) is defined by (4.13) and hn by Z/0>£ = {}. Since it follows from the

assumption (4.5) about the xm that f(v) converges absolutely and uniformly for 0 g

v g 1 — «, we may integrate term by term in (4.16). Putting Y„ = x'^Tim + 3/2)/m!

this gives (with v = (1 — e)W)

±Ymf v"+ma - v)1/2 dv
m-0 JO

(4.17)

= E YM - e)n'm+1 [ wn+m[l - (1 - e)W]W2 dW
m-0 ^ 0

= E F„(l - <y+m+\n + m+ 1)_1F( —1/2, » + m+ll» + m + 2;l-«) (4.18)
TO — 0

00

= Z Ym( 1 - e)n+m+\n + m + 1 )"1F(-l/2, n + m+ l;»+m + 2;l)
m —0

(4"19)

+ ± Ym( 1 - e)n+m+1(n + m + 1)"'{F(- • • ; 1 - e) - F(-• • ; 1)}.
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According to Gauss's formula (cf. Whittaker-Watson [3])

F(—1/2, n+m+l;w + m + 2;l) = (ra + m + l)!r(3/2)/r(n + m + 5/2), (4.20)

and from Abel's lemma and from lemma 3 it follows that

lim ± Ym( 1 - €)"+",+1r(3/2)(« + m)!/(r(n + m + 5/2) = ^-U2hnn\/(S/2)n . (4.21)
€~*0 m = 0

Now we have to show that the second sum in (4.19) tends towards zero as «—* 0. Because

of (4.5) it suffices to show that

Cm , n(^)

= T(m + 3/2)[m!]-1[n + m + 1]_1{F( —1/2, n + m + 1; n + m + 2; 1 — «) (4.22)

— F( —1/2, n + ?ra + 1; ra + m + 2; 1)}

= r(m + 3/2)(2m!)-1 Z [1 - (1 - *)t+I]

(4.23)
• (l/2)t/{(fc + 1)!(« + m + k + 2)} -»0

as e —> 0 uniformly in n, m. We can prove that | cm,„(e) | < t by observing that

1 — (1 — e)k+1 jS (k + l)e. This and (4.23) gives

I c„„(e) | ^ eT(m + 3/2)(2m!)-1 £ (l/2)t(» + m + & + 2)"1{fc!}"1
*-0

= «r(m + 3/2){2m!(ft + m + 2)}~IF(l/2, n + m + 2; n + m + 3; 1)

(4.24)
= er(l/2)r(m + 3/2) (n + m + l)!{2ra!r(n + m + 5/2)}_1

1/2
T

- t
7T1/2 (m + l)(wt + 2) • • • (m + ft + 1) < 1/3 /2

2 (m + 3/2)(m + 5/2) ■ ■ ■ (m + n + 3/2) = ^ 6-

The uniqueness of the solution follows from

Lemma 4: 7/ xm/(m + 3/2) converges, then for 0 g v < 1, (1 — v)3/2 j f(v) | is

bounded. The proof follows from summation by parts with the notation (4.8) and from

the remark that

£ r(m + 5/2) | <rm , vm/(m + 1)! g C[(l - v)~*'2 - IJiT1, (4.25)
m —0

where c does not depend on v.

Now we can show that (4.3) cannot have a null solution. Because then the difference

<t>(v) of two solutions of (4.11) would satisfy

f1 «(»)(1 - i>)"V dv = 0, n = 0, 1, 2, • • • , (4.26)
Jo

and therefore:

f $(»)(1 - t>),/2(l -v)v"dv = 0, ft = 0, I, 2, • • • (4.27)
•'o

But <j>(v) (1 — i>)3/2 would be a function continuous in 0 ^ v ^ 1 according to lemma 4

and therefore (4.27) shows that <t>(v)( 1 — v)s/2 would be identically zero.
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Conclusions from theorem 1. The equivalence of the equations Lco)£ = {hm\ and

Z/<a,>£ = {A*} to a problem of moments shows that these sets of linear equations are

unstable in the following sense: Not only may these equations have no solution at all,

but this is certain to happen if we start with a set {hm} of right hand sides for which

a solution exists and then change a finite number of the hm by an amount however small.

In this case there does not even exist a continuous function f(v) which satisfies (4.11)

or (4.12) with the modified right hand sides.

The integral operators in (4.11), (4.12) are extensions of the linear operators defined

by L<0) or L(c°', since (4.11) or (4.12) may have a continuous solution f(v) which is

not analytic. Consequently, a quantity like the transmission coefficient

T* = [' f(v)v'/2 dv = jz xj(m + 3/2) (4.28)
• 0 m—0

can be defined even in cases where the x„ do not exist. An easy example is offered by

the equations

t xj(n + m + 2) = n/(n + 3/2), (n = 0, 1, 2, • • ■) (4.29)
m=* 0

which were also investigated by Levine and Schwinger. The corresponding integral

equation is

[ f(v>(1 - vW)'1 dv = n it W/(n + 3/2) = M /*' vw'/(l - vW)" dv (4.30)
Jo n-0 Jo

which gives

f(v) = nv-1/2, T* = fi. (4.31)

In this case no set of xm satisfying (4.29) can exist. However, it is possible to find sequences

of constants Fir> such that

7i°(m + n + 2)-1 = ^ (4.32)
m-0

exist and

lim E {^r) - n/(n + 3/2)}2 = 0, lim £ /{m + 3/2) = (4.33)
r—»w n—0 r—*oo m = 0

For this purpose, we can choose the ¥„' from

E YLr)vm = E(l- v)\l/2)Jk\ (4.34)
m-0 jfc=0

The right hand side in (4.34) is a polynomial which approximates v~I/2, since it is the

(r + l)-th partial sum of [1 — (1 — v)]~1/2. Clearly, the Y'^ as r —><».

5. Uniqueness and existence of the solution. Once a vector £(0> has been determined

such that L<0)£<0) = 17, where 17 is the vector of the right hand sides in the original equa-

tions Lt — n, we can determine £ from

= £(0> (5.1)
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where, for all values of /?, M is defined by

M = a + Z fS™ + Z /32<,+3£(2<,+3) (5.2)
P-1 0=0

Here if denotes the identity. We shall call a vector £ bounded if Z | |2 < <» and we

shall call a matrix M bounded if there exists a constant U > 0 such that for all bounded

vectors £:

Z*M'*M£ g: U2 Z I €« I2 (5-3)

where M' is the transposed matrix of M and an asterisk denotes the conjugate complex

quantity. U is called an upper bound for M. It is well known that, if Ur is an upper

bound for <Slr>(r = 1, 2, 3 •••), the matrix M in (5.2) has a bounded inverse M~l if

Z PrUr < 1 (5.4)
r-2

M~1 can be obtained from a Neumann series. We can use this in order to prove:

Theorem 3. Let L, M, ij<0), £(0> be defined by (3.5), (5.1), (3.27), (3.28). Then M~l

exists and is bounded for sufficiently small values of \ fi | < /?0 and the equations L% = rj'°'

have exactly one solution £ which satisfies (4.5) and (4.6), namely £ = ilf_1£<0).

Proof: Let F<r) be matrices such that

{* + Z + Z j8'F<rj = g. (5.5)

It is easily seen that the F<r) can be obtained from the <S<r) by recurrence formulas.

Let Uir) be upper bounds for the S(r) and assume that there exist constants 0r such

that

(l - E /3r£/r)(l + Z /J'Q,) = 1. (5.6)

This is true if

1 - E PUr (5.7)
r-2

is convergent and positive for 0 g /3 < 0O . Then it can be shown that Qr is an upper

bound for F<r). Since it can also be shown that xm (the m-th"component of £ = M_1£(0))

is equal to the m-th component of

(5.8)

it follows that

I z- I £ Z P'Vr ■ (5.9)
r — m

From this it can easily be shown that for | /3 | < /30 condition (4.5) for the xm is satisfied.

This proves the existence of M_1 and of a bounded £ satisfying (4.5), (condition (4.6)
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is always satisfied for bounded £) if we can find Ur which are sufficiently small. We have

Lemma 4. The matrices

{£<2)}', R"\ s"'+2), S(2Q+3) (5.10)

hare as upper bounds

7r(7r2 - 8)1/2/4, 217V - 8)in/t\, (2tt2 - 16) 1/22'+2(l/2)«/(< + 1)!,

(5.11)
2-+\2tt2 - 16),/7(g + 1)!

The proof is elementary but laborious and will be omitted since the upper bounds

are not the best possible ones.

In order to prove the uniqueness of the solution £ = M_1£<0) we observe first that

(M — £)£ is bounded for every £ merely satisfying (4.5); provided that 0 is so small

that (5.4), with the Ur from Lemma 4, converges. This can be proved by an elementary

investigation of the S{,). Now if there is a £* satisfying (4.5) and (4.6) such that L£* = 0,

we would have M%* = £* + f where f is bounded and L(0)£* + Z/0)f = 0. Now it follows

from the equivalence of the operator L<0) to the operator of a moment problem (cf.

Theorem 2) that £* + f = 0. Therefore £* is bounded, and since M'1 is bounded, £*

must be zero since M£* = £* + f = 0.

No numerical values for the permissible ranges of /3 are given since it is entirely

possible that the inverse M-1 exists for all values of f3. This seems to be indicated by

a result of Sommerfeld and Perron [5] who showed that for the related problem of the

freely vibrating disc the real part of a resulting set of linear equations can be solved

explicitly and without restrictions.
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