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Summary. The potential on a rectangular airfoil due to an arbitrarily prescribed

motion at its surface is obtained by an operational solution of the linearized equations

and subsequent comparison with the known solution in steady flow. It is shown that

the result can be extended to more general planforms with the aid of the Lorentz trans-

formation. Other methods of solution are noted.

1. Introduction. The problem of unsteady motion of a rectangular airfoil in super-

sonic flow has been treated in closed form by Goodman [1, 2], Miles [3, 4], Rott [5],

Stewartson [6], and Stewart and Li [7, 8]. The results of refs. 1-6 are in mutual agree-

ment, but those of Stewart and Li are believed to be incorrect due to their (in our

opiniont) erroneous conclusion that Eward's "equivalent area" concept is applicable

to non-stationary flow, the derivation [9] of which has been criticized elsewhere [10],

The reason for the addition of the present paper to this already voluminous literature

is to present a solution that is valid for an arbitrarily prescribed motion of the airfoil.

In principle, the solution of ref. 3 is sufficiently general in virtue of Fourier's theorem

(with reference to the time dependence) and the possibility of expanding velocity dis-

tributions of practical interest in powers of y", but the following solution has the ad-

vantage of exhibiting the dependence of the potential on the prescribed velocity in a

more explicit form. Moreover, the end result affords an immediate extension to plan-

forms with oblique edges. Finally, the result permits a precise extension of the equivalent

area concept to non-stationary motion of a rectangular wing, albeit this interpretation

does not permit further generalization to other planforms.

2. Formulation of the problem. We consider a quarter infinite airfoil whose pro-

jection on the plane z = 0 is bounded by X = —Ut/l and y > o in the fixed, right

handed, dimensionless (with I as the characteristic length), Cartesian coordinates

(X, y,z), U being the flight velocity and t the time. On the basis of the usual assumptions,

the linearized equation for the velocity potential is the wave equation

4>XX + <£i/v + — <t>TT (2.1)

T = at/l (2.2)
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where a is the sonic velocity and T a dimensionless time. In the end results we shall

exhibit <£ as a function of the moving coordinates (x, y, z), related to the fixed coordinates

(X, y, z) by the Gallilean transformation

1 M\ X

1 /\lT/a/
(2.3)

but in carrying out the analysis it is expedient to introduce the modified Lorentz trans-

formation

18 = (M2 - 1),/2 (2.4)

V, z, t) = </>(z, y, z, t) (2.5)

Transforming the original wave equation (1), we obtain the new wave equation (with

the positions of the axial and time variables reversed)

^rr + = ^££ (2.6)

which is conveniently regarded as the canonical form for non-stationary flow at super-

sonic speeds. [If in (4) we take /3 = (1 — M2)1/2, M < 1, we have the classical Lorentz

transformation, and (1) remains invariant with respect to the position of the space

and time coordinates. The application to subsonic airfoil theory has been discussed by

Kussner [11].]

The boundary condition to be invoked at the airfoil is

<t>. = —w(x, y, <); x > 0, y > 0, 2 = 0 (2.7)

where w is the prescribed velocity, positive down. In the transformed coordinates, we

write

= -»(?, V, r); £ > 0, y > 0, 2 = 0 (2.8)

yfe, y, t) = w(x, y, t) = w[PZ, y, (l/pa)(MZ - r)] (2.9)

In consequence of the symmetry of this boundary condition with respect to z = 0, the

potential itself is anti-symmetric thereto, and we may restrict our consideration to the

half space z > 0, provided that we pose the additional boundary condition

^ = 0; £>0, y <0, z = 0 (2.10)

In addition to the local boundary conditions (8) and (10), it is necessary to impose

the requirement that behave asymptotically as a disturbance originating at the wing

and vanishing identically forward of the zone of action of the wing, toward which end

it suffices to write

i = 0; £ < 0 (2.11)

together with the Sommerfeld finiteness and radiation conditions in the original co-

ordinates (X, y, z, T), although the latter may not be necessary in all cases.
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To complete the formulation, we note that the perturbation pressure at the upper

surface of the wing is given by

V — —poK<t>)x — — pna$~l(M\pl + ^,); £ > 0, y > 0, z = 0+ (2.12)

We now pose the following problem: given w, find <f> on z = 0+ or, equivalently,

find a solution to (6) satisfying the boundary conditions (8), (10) and (11), together

with the appropriate conditions at infinity.

3. Reduction to steady flow problem. Let ^ be the transform obtained by posing the

time dependence exp (ikt) and taking a Laplace transform with respect to |, viz.

exp (z'kt)^(s, y, z, k) = £f{^} = f V, z, r) d| (3.1)
•'0

with a similar representative, V, for v. Transforming the boundary value problem of

the preceding section, we have

- X2* = 0, X2 = s2 + k2 (3.2)

*2=-F; y > 0, z = 0 (3.3)

^ = 0; y < 0, z = 0 (3.4)

We now consider the "quasi-steady" problem obtained by setting X = s (/c = 0)

in (2) [but k 7^ 0 in (3)], which is tantamount to neglecting \prr in (2.6), thereby reducing

the boundary value problem to one in steady flow. The solution to this reduced problem,

which is obtained most directly by Eward's method [12], is designated by and given

at the wing (all subsequent potentials also are specified at z = 0+) by

Mi, y> °+> T) = ~ [ dtx [ [(£ - n)2 — (y — Tj)2]~1/2v(n, t), t) dri (3.5)
T Jo J | <£—(O-vl

the integration being carried out over the trapezoid bounded by the Mach lines passing

through (£, y), the reflection of one of these [tj = y — (£ — n)] in the side edge, and the

leading edge.

Taking the Laplace transform of , we have, by a slight extension of the Faltung

heorem,

= ££{^ol = £{£*{- [ [£* — (y — v)2]~I/2v(ji, v, t) cZtj} (3.6)
l71" J ie—i/i )

Carrying out the indicated operation on v and substituting X for s in the operation

with respect to £, we have

*(«, V, 0+, *)

= f exp [-(s2 + k2),/2^]{- fe+" [I2 - (y - t))2]~1/2F(s, v, «) dv\
J o J | $ —y| )

where the phase of (s2 + k2)1/2 is chosen to ensure a positive real part.

4. Solution for harmonic time dependence. To effect the inverse Laplace transform

of (3.7) we introduce the theorem [c/. p. 123 of ref. 13, a source hereafter denoted by MO]

£-'{f[(s2 + «2)I/2]} = m + J*'2/(£ cos e) j-6 sin 6) dd (4.1)
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the application of which yields

^ = V^o + ~ /Q d6 J0 fe ~ sin 6] dfi

. ,+' [ft _ cos> , _ T)
* I ({—m)cos0-»1

where the second term appears as a correction on the "quasi-steady" solution.

An alternative expression for \f/ that separates out the "strip theory" contribution

i. = [ «/oUft ~ m)Mm, y, t) dfi (4.3)
Jo

c an be obtained from (2) after integrating by parts and noting that

/» (£—M) COS0 + V

lim
/* Ki — lt) COS 0 + V

im / [ft — m)2 cos2 6 — (y — t)Y]~1/2v(h, ij, t) dt) = ttv({, y, t) (4.4)
*t/2 J | (t-n)cOBd-v\

e

l r*/2 r£
ip — ip, / dd «/o[k(I — n) sin 6] d/j.

TT J 0 J 0

whence

(4.5)
d_

dd ,

/* ({-M> COS0 + V

/ [ft — At)2 cos2 6 — (y - i?)Ti/2v(m, 7?, t) rf??
* I ({ —m)cob0 —vl

In the special case where v is assumed to be independent of y the y integration may

be carried out explicitly, the result being

t - - f dd [ J0[k(£ - n) sin V]v(n, r) ^sin-1 [y/ft - n) cos 0]1/2 dn (4.6)
x Jo Jo oO

where the arc sine is to be replaced by 7r/2 when its argument exceeds unity. Changing

the variable of integration yields

O /.COS-1 (v/m)

i  / dfi J0[k(h2 — y2 sec4 <p)1/2]v(l- — n, t) d<p (4.7)
7T J o .'0

The last result is essentially in the form given by Stewartson [6], [We remark that it

was the form of Stewartson's result that suggested the present approach, although the

use of (8) in connection with supersonic airfoil theory is due to Magnaradze [14, 15]

and has been applied previously to the rectangular wing by Galin [14], but without

much progress, since he found it necessary to introduce Fourier series in £ (c/. ref. 15).]

5. Arbitrary time dependence. Generalizing the result (4.2) we have, after Fourier

transformation (M0119) and convolution,

1 /» t/2 /»£ /» (£-m)cos0 + v

i = io + s / dd dn [ft — /i)2 cos2 e — (y — J?)2r1/2 dt)
IT J o J 0 J I (£—fi) cos® — i/l

• j-Q r""""" [ft - m)2 sin2 6 - (r - f)2]-1/2KM, V, f) dt
00 J r- <{-p) sin«

In connection with the f limits of integration, we remark that the maximum and mini-

mum values of f permitted in v are and r — M(£ — n), corresponding to — °° and
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present time after transformation back to the physical variables. Both of these limits

being outside of the domain in which the inverse transform of J0 [k(£ — n) sin 0], is

non-vanishing, we choose the limits as shown, although v may vanish over some part

of the latter region, as in transient problems.

A more convenient expression for \f/, obtained by introducing a trigonometric variable

in place of f, is given by

j /» t/2 /» t /»{ i% (£-m)cob0 + i/

i = + 4 de dx dix [(£ - m)2 cos2 e-(y- v)2ru2
7T J o J o J 0 J I ({—m) cobO — v I

(5.2)

• J~e vk V, r + (£ - m) sin 0 cos x] ^

Numerous, alternative forms may be obtained by additional changes of variable and

by integration by parts.

Finally, upon substituting the physical variables x, t, <j> and w from (2.2, 2.3, 2.4,

2.5, 2.9) we obtain

1 /»0_l (z-M)+1/

<t>o = - dv l(x- m)2 - P\y - v)2VW2
TJ0 J 10-.(*_„)_„!

(5.3)
• w[n, v, t — (Ml/f?a)(x — m)] dt]

1 /%t/2 /%r /%x i»P~l (*—n)eoa6 + v

<t> = <t>o + — / dd / dx / dn / [(x — m)2 cos2 0 — 02(y — t?)2]'172
7T J o •' 0 0 I 1 (i—n) oobO — u |

(5.4)

• — w[^, v, t — (Z/02a)(M + sin 6 cos x)(z - aO] dv

6. Oscillating wing. For the important special case of a wing undergoing the oscil-

lating motion prescribed by

w(x, y, t) = Rl{w(x, y)e""} (6.1)

we have only to choose

X = kM/p, k = Ul/U (6.2)

in (4.3) and (4.5) and return to the original variables, whence

4>, = fi By exp [icol - i(kM /0)(x - »)]J0[(kM/f)(x - »)]w(p, y) dnj (6.3)

</> = <t>, — - Rl\ [ dd f exp [iicot — i(kM2/ff)(x — n)]J0[(kM/f32)(x — /x) sin 0] dfi
^r Uo Jo

(6.4)
l*(J 1 (x — fl) cobO+V

[(x- M)2 COS2 6 - p\y - v)2rU2w(n, v) dr,\
OU J | p — i (x—n) cob6 — v | J

7. Extension of Eward's "equivalent area" concept. It is of some interest to note

that in (4.2) et. seq. the domain of the (n, ij) integration is bounded by the pseudo Mach

lines 77 = y ± (£ — n) cos 0, together with the reflection of 77 = y — (£ — n) cos 0,
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namely 17 = (£ — yi) cos 6 — y, in the side edge. This interpretation furnishes an ex-

tension of Eward's "equivalent area" concept to unsteady flow, but the extension is

not valid for oblique or curved side edges, since, in general, the equation for the reflected

Mach line would be of the form j? = /(£,£ — m) — U, rather than simply /(£ — n) — y,

and the Faltung theorem [cf. (3.6)] would not be applicable.

8. Oblique edges. The extension of the foregoing results to wings having arbitrarily

prescribed supersonic leading edges and streamwise side edges is trivial, since it is

necessary only to circumscribe a fictitious rectangular wing and set w = 0 over those

portions that are not included in the original planform. [However, it should be remarked

that the Mach lines from the opposite corners may intersect on the wing only if it is

rectangular (cf. ref. 3).] To extend the results to a straight, subsonic leading edge that

is adjacent to a supersonic leading edge and does not interfere with any other subsonic

edge, we may apply the Lorentz transformation

under which (2.6) remains invariant. Unfortunately, it is then no longer possible to

obtain results for the spanwise integrals of the potential that are comparable in sim-

plicity to those for the rectangular wing (cf. refs. 3, 5, 6.).

The use of (1) in connection with supersonic wings in steady flow is well known

(cf. refs. 16-18), but the application to unsteady flow problems seems not to have been

noticed previously, perhaps due to the fact that the differential equation usually is

written for <f>(x, y, z, t), rather than \p(%, y, z, t).

9. Other methods. It is rather curious that of all the methods that have been applied

to the problem of diffraction by a half plane, the classical counterpart of the supersonic

rectangular wing, none [e.g., Poincare's original treatment, Sommerfeld's celebrated

application of multivalued integrals, Lamb's use of parabolic coordinates, Magnus'

solution of the integral equation, the Wiener-Hopf technique applied by Copson and

Schwinger, etc.) cf. ref. 19] has proved as effective as the methods derived especially

for the wing problem, notably Busemann's use of homogeneous solutions ("conical^

flows") and Eward's method. (We remark that each of these methods had antecedents

in the work of Bateman [20].) This is at least partially due to the different foci of interest

in the two situations, viz. the potential on z = 0 in the wing problem and the solution

at a distance (particularly near the boundary of the geometric shadow) in the diffraction

problem, but it is of interest to note that the method of conical flows furnishes an elegant

approach to the problem of pulse diffraction [21, 22, 23], while the application of Eward's

method to case of an arbitrary incident wave has received attention in a recent paper

by Friedlander [24].
The foregoing remarks notwithstanding, Lamb's method has proved rather at-

tractive for the special case of no spanwise variation of w, an application discussed

recently by Rott [5]. This method is, in fact, applicable to more general spanwise dis-

tributions [25], but, in the form presented by Rott, it is much less direct than the present

method, from which it differs fundamentally in prescribing the boundary data on the

wing tip Mach cone, rather than the wing proper. However, if the potential is desired

only at the wing the boundary data may be prescribed there. Thus, a solution to (3.2)

in the polar coordinates (p, <p) that vanishes on z = 0, y < 0 (ip = t), gives a null value
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of the normal derivative on the wing (<p = 0) and vanishes properly at infinity is given by

= F(s, K)p-,/2e"Xp cos ifp/2). (9.1)

This solution evidently is appropriate to the case where v is independent of y. More-

over, at large distances from the edge St' must reduce to the two dimensional solution,

viz. [cf. ref. 6 or (3.2) and (3.3) with 1Jr„„ = 0]

lim * = = X~V(s, x)e~xl". (9.2)
V-.eo

Integrating (1) subject to the conditions that ^ must vanish at y = 0 and satisfy (2)

asymptotically, we have on <p — 0

* = X"V(s, x) erf [(\2/)1/2] (9.3)

the inversion of which yields the result (4.7).
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