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A NOTE ON THE APPLICATION OF SCHWINGER'S VARIATIONAL

PRINCIPLE TO DIRAC'S EQUATION OF THE ELECTRON*

By H. E. MOSES {Institute for Mathematics and Mechanics, New York University)

Sehwinger's variational principle has been used for a wide variety of problems in-

volving wave motion in which it is desired to find the amplitude of a scattered wave in

terms of the incident wave.** Sehwinger's method makes use of the fact that the ampli-

tude of the scattered wave satisfies a variational principle. We shall indicate this

variational principle briefly.

Let us consider a vector space. We may define two different inner products, the

Hermitian and symmetric inner product, in this vector space. The Hermitian inner

product (a,b) of two vectors a and b is defined by the condition that

(a, b) = (b, a)* (1)

where the asterisk indicates the complex conjugate. The symmetric inner product is

defined by the condition

(a, b) = (6, a). (2)

Let us consider a vector space with a Hermitian inner product and consider a pair

of equations

( a = Ky,

{ (3)
W = K'y',

where K and K' are Hermitian adjoint operators which by definition satisfy the con-

dition

(K'u, v) = (u, Kv) (4)
4

for any two vectors u and v. If K' = K, K is a Hermitian operator. It can be shown

from (3) that

(a', V) = (y', a) (5)

which is called the reciprocity theorem. Let us define a number X by

X = j~t—r = ~t~t (6)
(y , a) (a , y)'

and the functional by

so that

x.„  (KV, v) (7)
X{V'V] ~ (v',a)(a',v) (v',a)(a,v) (7)

My, y'} = X- (8)

*Received March 25, 1952.
**See, for example, Sehwinger's unpublished nuclear physics notes, or the lectures of N. Marcuvitz

in the notes "Recent Developments in the Theory of Wave Propagation", Inst, for Math, and Mech,,

N.Y.U., 3949-50. The problem of the present paper is treated abstractly in the first set of notes. The

point of view of the present note is close to that of the latter set of notes.
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It can be shown that is stationary for independent variations of v and v' about

the values y and y' respectively and that, therefore, from (8), the stationary value of

X{} is X.

A similar statement holds if the symmetric inner product is used. In this case K'

is said to be the symmetric adjoint operator of K if K' and K are related by (4).

In Dirac's theory of the electron, the elements of the vector space are functions

f(x,y) of the coordinates denoted collectively by the vector x, and of a variable y which

is restricted to four values which may be taken as 1, 2, 3, 4. These functions are called

spinor components. The Hermitian inner product of f(x,y) and g(x,y) is given by

Z [ fix, y)*g(x, y) dx
7 ■= 1 J

and the symmetric inner product by

Z) [ f(x, y)g(x, y) dx.
7 = 1 J

Dirac's wave equation for the electron in an electromagnetic field is

l) = HKx, y, t) (9)

where H is an operator which operates on x and y and is given by

H = H0 + q (10)

with

JL, d
Ho = 2_, i«i ~

q = X atjAi(x) + e<t>(x)

I
f

(11)

Here a,- and are Hermitian operators which operate with respect to the variable only.

They satisfy the following commutation relations

2

' )

cijOii + a,a, =

pa, + afj8 = 0, > (12)

(0)2 = I,

where I is the identity operator.

The operators a, , fi can be expressed as integral operators with kernels a,

P(y,y') which are the well-knoivn Dirac matrices.

We have taken h/2ir = c = 1. The mass of the electron is to and its charge is e.

The functions Ai(x) and are the vector and scalar potentials of an electromagnetic

field and are taken as real and are assumed to vanish if | x | > r0, for some r0.

We shall look for solutions of equation (9) which can be written as

\p{x, 7; t) = e~'Etx(x, y\E) (13)
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so that equation (9) leads to

Hx(x,y,E) = Ex{x,y,E). (14)

We shall write

X = Xin + X.c , (15)

and require that x.n be a solution of

HoXUx,y;E) = ExUx,y;E) (16)

where H0 is given by (11). Suitable solutions are the "spinor plane wave" solutions

which have the form

i |*| (jjx)

X,„0r, y; E) = x(t; E, V, r) ^n-)3'2 ^

where 17 is a unit vector which specifies the direction of propagation, (jjx) is the inner

product of the vectors x and y, and j k j is the absolute value of the momentum vector

and is given by the relation

| k |2 = E2 - m\ (18)

Here r is a variable which is restricted to two values which may be taken as +1 and

— 1. The significance of r is that it represents the component of the spin in the direc-

tion of the momentum.

By substituting (31) into the equation H0 x<» = £x.* it is seen that the functions

x(y; E, r\, r) = x(7; E) satisfy the following equation

E + I k I a.rjj + Pmjx(y; E, V, t) = 0. (19)

For the purpose of the present note, it is not necessary to give an explicit form for the

functions x(y; E); these functions can be found in textbooks. However, it will be useful

to indicate the orthogonality properties of the functions. These orthogonality relations

are

Jlx(y;E, 77, r)*x(y;E, v, r) =

> (20)

X! x(t; — E, v, r)*x(y;E, v, *') = )

also

Yi,x{y,E, V, r)x(y'; E, ri, r) + X x(t; —E, y, r)x(y'; —E, y, r)* = 8(y, y'). (21)
r r

From (14), (15) and (16) it is seen that x«» satisfies

[E - IhhJx, y,E) = qx(x, 7; E) (22)

the solution of which can be written in terms of influence function g{x,y; x', 7'),

X.c(x,y;E) = X f g(x,y;x',y')qx(x',y';E) (23)
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where

[E - H0]g(x, 7; x', 7') = S(x - x') S(y, 7'). (24)

In (24) the operator [E — H0] operates on the variables x, 7. Since the physically in-

teresting problem is that for which x«c is an outgoing wave, we shall take an outgoing

wave solution for (24). It will now be shown how this solution which we donote by g

is obtained.

From the commutation rules (12) for a,- , /3 one has

[E + H0][E - H0] = [E - H0][E + H0] = (E2 - m2 + V2) = (| k |2 + V2). (25)

Consider now a solution of the differential equation

(E2 - m2 + Vl)s(x, x') = (| k |2 + V2)s(z, x')

= 8(x — x'). (26)

(The subscript x on the operator V2 indicates that the differentiations are to be carried

out on the variable x rather than x'.)

Any solution s(x,x') of equation (26) can be used to form a solution of equation (24).

From (25) and (26) one has

[E - H0][E + H0]s(x, x') 5(7, 7') = 8(x ~ x') 6(y, y'). (27)

Hence a solution g(x, y; x', 7') of (24) is

g(x, 7; x', 7') = [E + H0]s(x, x') S(y, 7'). (28)

This method of obtaining influence functions for the Dirac operator is a well-known

one. A solution sr(x,x') of (26) which leads to an outgoing wave is

iltl Ix~x' I

- -4,1*-,'r (29)

The influence function gr obtained using sr is in explicit form

/ / /\ /— [| k | | x — x' | + i] / ,w
gr(x, y; x', 7 ) = —1—It znr  2^ «.(t, 7 )(«.- - x',)

x — x

- mfi(y, 7') + E 5(7, 7')} J{ x _ x> |- (30)

Here a^y, 7'), j3(y, y') are the matrices which represent the operators a, /3. The function

gr represents an outgoing wave because the time factor is e~'Et (see (13)).

For large values of | x |, the expression for x,c becomes

x.c(x, 7; E) = | x | 5(t, 7') — I k | a<(y> y')vu - ™&(y, 7')]

f e-""(*'-")qx(x',y';E)dxj. (31)

In the above expressions and in those following the result of operating with an operator

such as q on a function / (x, y) will be a function of x, y which will be denoted by qf (x, y).



1953] H. E. MOSES 115

Here 77, is a unit vector with components vn defined by

a: = | x j tii (32)

We should like to re-write (31) so that the amplitudes of the spherical waves are

inner products in order that we may ultimately use the variational principle to obtain

these amplitudes. This line of thought motivates our use of the identity

| E d(y, >') ~ U' I E «.(t, y')v, ~ m0(y, y')

= 2E Z x(t; E, n, r)x(Y) E, v, r)* (33)

Though this identity is fundamental in our treatment, we shall not prove it, since it

follows directly from (19) and (21).

If the incident wave part of the function x(.x, y; E) has the direction rj' and the value

of r is r', we shall denote x(x, y; E) by x(z, y', E, 77', r'). We proceed to define the "spinor

spherical wave" d(x, y; E, 77, t) by

6(x,y;E, 77, r) = x(y; E, 77, r). (34)

The spinor spherical wave is analogous to the spinor plane wave (17). Furthermore,

we define T(E; 17, r; r\, r') by

T(E; V, r; r') = Z f x(7')E, V, r)Vlt,<''",>gx(®', y';E, r') dx'
7' ^

= E [ [q*x(y';E, v, r)*]e-"kH''^x(x', y';E, v', r') dx'. (35)
y' J

The expression for x,t takes the form for large | x |,

X.c(x, y;E) — E e(x> ^ , t)T(E\ 77, , r; rj', r'). (36)
T

The scattered wave may be regarded as the sum of two spinor spherical waves, each

being characterized by a different value of r. The function T(E; Vt , V2 , r2) may be

regarded as the amplitude of the spinor spherical wave in the direction and with

r = r, when the incident spinor plane wave has as its direction of propagation tj2 and

its value of r is r2 . We have therefore obtained x.t in a form where T(E; t], r; 77', t') is

an inner product to which, as will now be shown, a variational principle can be applied.

In order to show how the variational principle discussed abstractly earlier may be

used to find the amplitudes T(E; t], t; ?/, r') we need only show what quantities are to

be identified with the quantities appearing in equation (3).

Let us first consider T(E; 77, r; 77', /) as being the symmetric inner product of two

vectors. We identify x(x, 7; E, r)', t') with the vector y of equation, (3). We see that

the vector a' is to be identified with q* x(7J E, q, r)* e~']k] (x, 77). From (15) and (23)

we construct the equation corresponding to the first of equations (3).

gx(y,E, 77', = qx(x,y;E, v', r')

~ 1 11 f 9r(x, 7; x', y')qx{x', y';E, 77', t') dx'. (37)
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The integral equation corresponding to the second equation (3) will also be given,

since it is not difficult to obtain symmetric adjoint operator K'. Accordingly, the integral

equation for A which is the function corresponding to the vector y' is

q*x'(y;E, ,, T)*e-'tl(l"> = q*A(x;y;E, v, r)

~ 1* 22 f ff>(x, y; x', t')9*A(x', y', E, 1], t) dx' (38)
7' J

where

g.(x, y) x', y') = gr(x', y'; x, y). (39)

Just as the integral equation (37) for x(x,.y, E, r), r) was derived from the differential

equation

Hx(x, 7," E, ??, t) = Ex(x, y;E, 77, r) (40)

together with appropriate boundary conditions, the integral equation (38) for A(x, 7;

E) t), r) can be derived from a differential equation with certain boundary conditions.

The differential equation satisfied by A is

H*A(x, y; E, 77, r) = EA(x, 7; E, 17, t) (41)

so that A is an eigenfunction of H*. The boundary condition on A is that it is to be

expressed as the sum of an incident wave A,„ and a scattered wave A,e such that Ain

satisfies

H*0Ain(x, 7; E, r\, r) = EAin(x, y;E, t), r) (42)

and A,,, behaves like the spherical wave (e'k | x |)/ ! rc | for large values of | x | .

We take as a suitable solution A,-„ of (42) the function x.>. where x<» is given by (17.)

The function A„ as can be shown from (40), satisfies the equation

Aac(x, 7;E) = [ ff-(x, 7; x', y')q*A(x', y'; E) dx' (43)
7 ' J

where the inverse operator [E — //1] ~1 is represented by an integral operator with the

kernel g, .

The functional corresponding to \{v',v) whose extremal value is 1/[T(E; 77, t; ?j', t')]

is written as \/T\v',vj and is given by

^ {v', v}

22 / v'(x, 7){qv(x, 7) - q 22 ffr(x, y;x', y')qv(x', 7') dx'} dx
7 \    7 ' ~  

rfx (44)

22 J v'(x,y)qx(y;E, v', (x"')dx)[22 J </*x(y;E, v, r)*e'i,k,"^v(x. y)dxJ

where v' and v are the trial functions which approximate A(x, 7; E, 77, r) and x(x, 7;

E, r)'. t') respectively.

Having considered the case where T(E; r1, r; r\, r') is a symmetric inner product, we

shall now discuss the case in which this amplitude is considered a Hermitian inner product
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of the two vectors q x(y; E, 77, r) e' \ k | (rj, x) and x(x, 7; E, i\', r'). The identification

of the vectors a and y and of the operator K are as before in the case of the symmetric

inner product. The vector a' is now identified with q x(7E, 17, T)e' k The

vector y' is identified with the function Q(x, 7; E, 77, t) which satisfies the following

integral equation which corresponds to the second of equations (3).

qx(y'-,E, r)eml("*' = qQ(x,y,E, v, r)

~ Q H f 9'(x, 7; x', y')qQ(x', y')E, tj, t) dx' (45)
y ' J

gt(x, 7; x', 7') = gr{x', 7'; x, 7)* = _|llA_LL^  ll a,(7, y')(xi - x\)

where

',1 3

x — x

- m/3(7, 7') + £ S(7, 7')| 4^ j a; _ x' |-

It can be shown that 0(z, 7; E, r), r) as a solution of a differential equation with

suitable boundary conditions. The function Q(x, 7; E, 17, r) satisfies the differential

equation

HU(x, y,E, 77, r) = £70(2, 7; 17, t) (47)

so that like x, is an eigenfunction of H. However, the function 0 has different boundary

conditions than x- The boundary condition on 0 is that it should be expressed as the

sum of an incident part 0,-„ and a "concentrating" part 0CO[1. The function Qin satisfies

H„Qin(x, 7;E, v, t) = EQin(x, 7; 17, r) (48)

and is taken to be x.n as given by (17). The function Ocon is specified by the condition

that is to behave like an inwardly moving spherical wave for large values of | x | .

Using the boundary condition that S2con represent an inward moving spherical wave for

large values of | x | , the inverse operator [E — H0]_l can be expressed as an integral

operator while the function g, is the solution of equation (24) expressed in the form (28)

when the solution s of (26) is taken to be

s, =
4ir | x — x' |

instead of sr given by (29).

In the case of the Hermitian inner product the functional 1 /T(v',v) is given by

f v)

Z J v'(x, y)*{qv(x, 7) - q J gr(x, y; x', y')qv{x', 7') dx'I dx (49)

Z I *(x, y)*qx(y;E, ,\ dx)(z f q*x(y;E, v, 7) dx)
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where v' and v approximate

S2(z, y;E, 11, t) and x(x, y; E, v', t'),

respectively.
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A FORM OF NEWTON'S METHOD WITH CUBIC CONVERGENCE*

By W. M. STONE (Boeing Airplane Co. and Oregon State College)

For obtaining an approximation to a root of a transcendental equation f(x) = 0

Newton's method may well be unsatisfactory because it is only quadratically convergent,

thus requiring considerable interpolation if the functions involved are scantily tabulated.

On the other hand, the formulas of Stewart [1], Hamilton [2], Bodewig [3], and others,

which offer cubic or higher convergence have the serious drawback of requiring the

evaluation of second or higher derivatives. Formula (4) below, based on the generalized

Taylor expansion of Hummel and Seebeck [4], offers cubic convergence in terms of /(x)

and fix) evaluated at points on each side of the root.

Taking n = m in the Hummel-Seebeck expansion,

   , , , fid) + fix) , , N2 f"(a) - f"(x) ,
f{x) = fid) + ix - a) J- 2 + ix - a) J- jy b • • • , (1)

we obtain two approximations to a root,

x — a ~%fia)  ^ x — b =  — (2)
/'(a) +/'(*) fib) + fix)' {)

We choose a and b so /(a) and /(b) are opposite in sign, /'(a) and f'(b) same sign. Elimi-

nation of fix) in equations (2) yields

fib) _ Jia)_ fjb) - fja) = Q
x — b x — a 2

or, by an obvious procedure,

_ 6+_a _ fib) - fja) ^ ~ ~ ^ 12

X 2 fib) - fid)
a , fjb) - fja) 1

^ fib) - fid)J

where choice of the ambiguous sign is quite obvious

b - a , fjb) - fja) |2 2(6 - a)fjb)
fib) - fid) (4)

*Received April 22, 1952.


