
1953] CHARLES SALTZER 119

Proof of cubic convergence of the method closely follows the more general dis-

cussion of Bodewig. We take A as the true value of the first order root,

f(x) = (x - A)g(x), g(A) ^ 0, (5)

and expand g{x) in a generalized Taylor series, powers of (x — A). Setting x = a„ , bn

in the series of equations (2) and carrying out the indicated division we obtain

- -[' - <*■« - A> 9U)2+m"') + p<<■' ~ + -]'

- A) + p-<* - * + -]'

(6)

or, finally,

xn+\ - A = (a" ~ A) P(x - A), (7)
On Cln

where P(x — A) represents a power series in (a„ — A), (bn — A), (a;n+1 — A), quadratic

terms and higher.

As a numerical example consider the first root of x tan x — 1 = 0. Taking a = 0.8,

b = 0.9 equation (4) yields the tabulated value 0.8603. Two or more applications of

Newton's method will involve interpolation if one has only a two place table at hand.

Estimates of the magnitude of error involved in interpolation by means of (4) have been

found by Hummel and Seebeck [5],
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THE SECOND FUNDAMENTAL THEOREM OF ELECTRICAL NETWORKS*

By CHARLES SALTZER (Case Institute of Technology)

1. Introduction. This paper will deal with an extension of the work of W. H. Ingram

and C. M. Cramlet1 as discussed by J. L. Synge.2 In addition it will be shown how their

theories fit into a unified theory. The terminology of Synge's paper will be used.

A network may be represented by its Thevenin representation, i.e. by regarding

its branches as consisting of impedances in series with constant voltage sources; or, it

may be represented by its Norton representation, i.e. by regarding the branches as

*Received May 5, 1952.
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consisting of a constant current generator in parallel with an admittance. In the first

representation Jthe Kirchhoff nodal constraints become homogeneous in the branch currents

and permit the introduction of mesh currents and the mesh equations, whereas in the

second, the Kirchhoff mesh constraints become homogeneous in the branch voltages

and allow the introduction of what P. Le Corbeiller3 calls the basic voltages and the

nodal equations. The theorem of Ingram and Cramlet which Synge describes as the

fundamental theorem of electrical network theory is the fundamental theorem for the

Th£venin representation of a network; the dual Norton theorem which is fully on a par

with this theorem will be proved independently in this paper, and the relations of the

two theorems will be discussed. In addition the nodal equations of G. Kron as given

by P. Le Corbeiller will be deduced by a method analogous to that of Synge's. It may

be noted that the nodal theorem is much easier to prove than the mesh theorem.

In section (2) we will prove the fundamental theorem for nodal networks and in

section (3) we deduce Kron's equations. In section (4) we prove that the nodal equa-

tions have a unique solution; and in section (5) we show the relation of the theorems

for the Thevenin and Norton representations. In section (2), (3) and (4) we shall consider

only the Norton representation of a network.

2. Basic node voltages for connected networks. Let N be the number of nodes:

Ji , J2, • • ■ Jn] and let B be the number of branches. In addition we assign a direction

to each branch and define Ek as the voltage rise from the initial point to the terminal

point of the kih branch. A path on the network is defined as a finite sequence of branches

such that each branch has one node in common with the preceding branch and the

other node in common with the succeeding branch. The first branch is required to have

only one node in common with the second and the last branch is required to have only

one node in common with its predecessor. For two nodes Jv and J„ and a path directed

from Jv to Ja we define Vvq as the sum of the voltage rises of those branches of the path

which have the same sense as the path minus the voltage drops of those branches of

the path which have a sense opposite to the sense of the path. We note that for the

given path Vp, = — VQV .

If we consider two paths joining Jv and Ja , these two paths taken in opposite

senses form a closed path or mesh. Since there are no voltage sources in the network

the sum of the voltage rises around the closed path is zero and thus V„Q for one path

plus VQV for the other path is zero. It follows from this that V„ is independent of the

path. If we select one node say ./, as a ground node and define Vv = Vlp (p = 2, 3, • • • n)

then V„ , the potential relative to the ground, is also independent of the path. We shall

call V2 , V3 , • • • , VN the basic voltages. Since the voltage rise across a branch from Jv

to JQ is V„ — r„ we have:

Theorem 1(a) If the branch voltages of a network satisfy Kirchhoff's mesh law then

there are JV — 1 basic voltages such that the branch voltages can be expressed in terms

of them. These basic voltages are the potentials of the nodes relative to the ground node.

In addition if we prescribe JV — 1 arbitrary basic voltages and define the voltage

drops across the branches as above then we have:

Therorem 1(b) An arbitrary set of JV — 1 basic voltages for a network generates a

unique set of branch voltage rises which satisfy Kirchhoff's mesh law.

If E is the column matrix of branch voltage rises Ex , E2, • • ■ EB then

E, = E A„V, (p = 1,2, ■ ■ ■ B) (2.1)
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where Ava is defined as follows:

1 if Jq is the terminal node of the pth branch

Avq = ^ — 1 if Ja is the initial node of the pth branch (2.2)

0 if J„ is not on the pth branch.

In matrix notation eq. (2.1) can be written

E = AV (2.3)

Theorems 1(a) and 1(b) together may now be stated as:

Theorem II: For any connected network taking any node as the ground node there

is a matrix A as in (2.2) such that:

(i) For arbitrary values of the associated basic voltages the branch voltages given

by E = AV satisfy Kirchhoff's mesh law on every mesh

(ii) For any set of branch voltages which satisfy Kirchhoff's mesh law on every

mesh there is a set of basic voltages V such that

E = AV.

This theorem is the dual analogue of the "central theorem" of Synge, and can be general-

ized to apply to linearly independent combinations of nodes. In addition the restriction

to networks which are not connected is readily eliminated by the use of ground nodes

in each subnetwork.

3. Node equations. If we designate the current source of the rth branch by Ir we can

define B branch currents Ui , U2 ■ • • UB each of which consists of the corresponding

branch source current and the branch current due to the branch potentials. In matrix

notation

U = I-YE (3.1)

where Y is the admittance matrix of the network whose elements are the self and mutual

admittances of the branches.

We write Kirchhoff's node law as

where

EV, = 0 (q = 2, 3, ••• N) (3.2)
P= 1

1 if JQ is the terminal node of branch p

Fav = ^ — 1 if JQ is the initial node of branch p (3.3)

0 if JQ is not on branch p.

In matrix form this becomes

FU = 0. (3.4)

If we compare (2.2) and (3.3) we see that F = A, where A, is the transpose of A. From
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(3.1) we have

A,(J - YE) = 0. (3.5)

If we define I', the column matrix of basic currents by

V = A tI, (3.6)

we can write (3.5) as

or by (2.3)

V = A,YE,

/' = A,YAV. (3.7)

Further, if we define Y' the basic node admittance matrix by

Y' = A ,YA, (3.8)

then (3.7) can be written as

V = Y'V. (3.9)

Equations (2.3), (3.6), (3.8) and (3.9) are the basic equations of Kron's nodal method

together with (4.1) below.

4. The existence and uniqueness of the solution of the nodal equations. We show

here that if I = 0 implies E = 0 then the matrix Y' is non-singular, and hence the system

of equations (3.9) has a unique solution. If I = 0 then by (3.6) I' = 0 and (3.9) becomes

Y'V = 0. (4.1)

Since V — 0 is a solution of (4.1) our assertion will be proved if we show that it is the

only solution. But if I = 0 implies that E — 0 then we must have V = 0. This is a conse-

quence of the remark that if E — 0, the basic voltages of the nodes on any path are all

equal, and since the network is connected and at least one node is connected to the ground

node, the basic voltages of all the nodes are zero. Therefore Y' is non-singular and from

(3.9) we get

V = (Y'y1 I',

and by (2.1)
E = A(A,YAyl A,I. (4.2)

This is the fundamental formula for the solution of nodal networks by Kron's method.

5. Relation of the nodal theorem to the mesh theorem. For the given network let us

consider any tree of the network. The voltage drops of the branches of the tree can be

prescribed arbitrarily since there are no closed circuits on the tree to which Kirchhoff's

mesh law applies. If we choose any node as Jx , construct V as above (see sec. 2.1),

define the voltage drop across any two nodes as the difference between the values of V

at the initial and terminal points of the node pair, and choose any sequence of nodes as

defining a path, then Kirchhoff's mesh law will be satisfied for any closed path. Thus

if we restore the branches, called chord branches, which were deleted to form the tree,

then Kirchhoff's mesh law is certainly satisfied for meshes consisting of branch paths.

Also if we replace these branches by their Thevenin equivalents then the currents in

these branches which, as Synge has shown, are a complete set of mesh currents, are
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determined by Ohm's law. If we now replace the tree branches of the network by their

Th^venin equivalents then by Synge's theorem all the branch currents are determined

and hence all the branch voltage drops are determined. Conversely if we assign the

chord branch currents in the network regarded as consisting of Thevenin branches,

then by Synge's theorem, the branch currents and hence the branch voltages are de-

termined. This implies that the branch voltage drops of the original network are de-

termined. This completes the proof of the equivalence of the nodal and mesh methods.

In addition, if the Thevenin equivalent branches are given then in Synge's notation

W = e — Zi or e = W + Zi (5.1)

where e is the branch voltage-source matrix, Z the branch impedance matrix and i is

the matrix of branch currents. In the notation of this paper if the Norton equivalent

branches are given then by

U — I — YE. (5.2)

Since we are dealing with two representations of the same network we may identify

i and U, and W and E. If Z is non-singular (5.1) can be written

i = Z~le - Z~1E,

and by comparison with (5.2) we have

I = Z~le, YE = Z'lE. (5.3)

If we multiply (5.1) by C, on the left and note that e' = C,e and i = Ci' then we have

e' = C,E + C,ZCi'.

Since e' = C,ZCi' it follows that

C,E = 0.

But by eq. (2.3) this may be written

CtAV = 0.

Since V can be prescribed arbitrarily we have

C,A = 0. (5.4)

This last relation can be derived on purely topological grounds4. Also since in (5.3) E is

arbitrary we have

F = Z\ (5.5)

Equations (5.3), (5.4) and (5.5) show the relations of the two methods.
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