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TWO NEW NON-LINEARIZED CONICAL FLOWS*

BY

J. H. GIESE (Ballistic Research Laboratories, Aberdeen Proving Ground, Md.)

and H. COHN (Wayne University)

1. Introduction. A steady compressible non-viscous flow is conical if it contains a

vertex P, such that 011 every half line through P the velocity components, pressure,

density, and entropy are constant. Various linearized conical flows have been discussed

by numerous authors. However, only three examples of non-linearized conical potential

flow fields are known to exist mathematically: Prandtl-Meyer flow around an edge [4]1

with or without sweep; Taylor-Maccoll flow about a non-yawing circular cone [5]; and

an axisymmetric flow through a convergent nozzle discussed by Busemann [1], In this

paper the construction of two new examples will be considered. Both contain two regions

of swept Prandtl-Meyer flow. In the first, the boundary has been chosen to prevent

them from interacting, and the hodograph is one-dimensional. From it can be obtained

a flow, with attached plane shock, over an object resembling an airplane with a swept-

forward wing of positive dihedral and with a thick fin. In the second, the boundary has

been chosen to permit interaction and the hodograph is two-dimensional. It was studied

originally in the hodograph space by one of the authors [2], In the present treatment, the

need to consider possible difficulties in constructing the flow field from a knowledge of

the hodograph has been avoided by confining the discussion to the physical space. It

should also be remarked that in both examples the second order partial differential

equation for conical potential flow is of mixed type.

A pair of these examples could conceivably be used to study a particular, atypical

case of wing-body interference. Numerical results can easily be calculated, if necessary,

with the aid of a characteristics table and by means of standard techniques for numerical

integration of ordinary differential equations and numerical solution of characteristic

initial value problems for second order hyperbolic partial differential equations in two

independent variables.

2. Fundamental Ideas. The velocity potential function of a steady irrotational

non-viscous isentropic flow satisfies

(a2(5,, — UiU,)d~<p/dXi dXj = 0 (2.1)

where x,- (i = 1, 2, 3) are rectangular coordinates,

Ui = dtp/dXi (2.2)

is the velocity component parallel to the x.-axis in units of the maximum speed of flow,

a2 = 1/2(t - 1)(1 - UiUi) = 1/2(7 - 1)(1 - q2) (2.3)

is the square of the velocity of sound, Kronecker's delta 5,, = 1(0) if i = (?^) j, and the

convention has been adopted that repeated indices imply summation over their range.

If q2 = UiUi > a, the flow is supersonic, and there exist real characteristic surfaces,

which are envelopes of the Mach cones

[u,(x* — x,)]2 - (q2 — a2)(x* — x,){x* — x<) (2.4)

^Received April 17. 1952.

•Numbers in brackets designate references listed at the end of the paper.
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where x* are running coordinates. At these surfaces the partial derivatives of <p of the

second or higher order may have discontinuities while <p and dip/dx{ remain continuous,

as may occur when two solutions are patched together.

The image of a flow under the mapping xf —» u{ is defined to be its hodograph. In

general, three-dimensional flows have three-dimensional hodographs, but not the ex-

amples in the following sections. Flows with one (two)-dimensional hodographs have

been called simple (double) waves. The relevant properties of simple waves, discussed

in [3], will be summarized briefly. For some function n(x), u, = Now (2.1) implies

tiu'iu'i — (UiU'i)2 = {qq')2 (2.5)

where u[ = dUi/d/x. The hodograph is any curve obtainable from a Prandtl-Meyer epi-

cycloid by deforming its plane into a cone with vertex at w,- = 0. To specify the curve

completely an additional equation and initial conditions are required. For example, in

a swept Prandtl-Meyer flow the velocity component parallel to a fixed unit vector X,

must be constant, that is,

Ui\i — constant. (2.6)

In the physical space the prototype of the hodograph point w,(m), a surface n = constant

which also bears constant pressure, density, and entropy, is a plane normal to u[. The

exact locations of the prototype planes in the physical space are as yet undetermined.

If all are forced to pass through a common point, the simple wave will be a conical flow.

Finally, note that a prototype plane is a characteristic surface, all of whose Mach cones

are congruent and have parallel axes.

Now let

Xa = xa/z(ot = 1, 2), z = x3 , w = u3 (2.7)

Later it will also be convenient to use X = Xt , Y = X2 , u = u{ , and v = u2 . Note

that to a point (curve) in the X,X2-plane there corresponds in the x.-space a line through

(cone with vertex at) the origin. Consider a general conical flow with vertex at the

origin. Since u, = dip/dx, are homogeneous of degree zero in the x, s, <p may be assumed

with no loss of generality to be homogeneous of degree one. Then for some $

v = z$(X, , X.2) (2.8)

Va = d<p/dxa = d<b/dXa , w = dtp/dz = $ — XaUa (2.9'

2 d2ip/dxa dxs = OX„ dXp , z d2<p/dxa dz = —Xp d2$/dXa 8X0

z d2<p/dz2 = d2$/dXa dX (2.10)

and (2.1) becomes

[«2(SQ0 + XaXf,) — (ua — wXa)(up — wXfi)] d2$/SXa dXp = 0. (2.11)

Characteristics for (2.11) are curves Xa = XJt) in the X,X2-plane on which the partial

derivatives of $ of second or higher order may have discontinuities, while $ and d<&/dXa

remain continuous. To these curves there correspond cones xa/z = Xa(t) on which, by

(2.10) or its analogs the partial derivatives of tp of second or higher order will have

corresponding discontinuities, while by (2.8) and (2.9) <p and d<p/dx, remain continuous.
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Thus xa/z — Xa(t) are conical characteristic surfaces for (2.1). A plane tangent to one

of them along the ray xa'z = I„ must be tangent to the Mach cone (2.4) based on

Ui — Ui(X, , X2) with vertex at the origin and must correspond to the tangent to the

characteristic Xa = XJl). Hence the characteristic directions for (2.11) must be those

of the lines through (X, , X2) tangent to the conic

(uaX*a + to)2 = (q2 - a?)(X*X*a + 1) (2.12)

with running coordinates X*. The type of (2.11) is hyperbolic, parabolic, or elliptic

accordingly as (X, , X2) is outside, on, or inside (2.12). For a conical simple wave (2.11)

is of hyperbolic type (except possibly on a curve on which the type is parabolic), with

straight characteristics. Furthermore, a region of hyperbolic type adjacent to a region

of uniform flow must be a conical simple wave.

3. Flow along a conical wall. It is well known that swept Prandtl-Meyer flow over a

dihedral angle can be generalized into simple wave flow past a curved cylindrical wall.

Now a generalization to simple wave flow in a trough with boundaries composed of plane

and conical segments will be discussed.

Consider uniform supersonic flow along a plane wall on which I is a line inclined with

respect to the direction of flow by more than the Mach angle. Let P be any point on I.

Extend the boundary beyond I as a cone through I with vertex P, and eventually join

the cone to another plane segment. Attempt to fit a conical simple wave to this boundary.

Let the origin of coordinates be at P. Describe the boundary by

Xi = rvt (m) (3.1)

where r and n are independent. With no loss of generality assume

v,v, = 1, v\v\ = 1. (3.2)

Then

vivr = vW = 0, v.vY = -1. (3.3)

Assume that the prototype planes pass through the rulings of (3.1). Then

u\Vi = 0 (3.4)

and the boundary condition on the cone becomes w, = Avt + Bvfor some scalar func-

tions A(n) and B(n). By (3.3) and (3.4) B = A', so

w,(M) = -4(m>,(/*) + A'Win). (3.5)

Now (2.5) becomes a2A'2(v'.'v'' — 1) = (A'2 — a2) (A + A")2, where

a2 = | (t - 1)(1 - A2 - A'2). (3.6)

For any curve on the unit sphere the curvature v'/ v" 1. Also, as in Prandtl-Meyer

flow with leading edge vAp), the normal component of velocity A' ^ a 0. Assume

that the simple wave is an expansion. Then A' (A + A") > 0, and

aA'(v'M' - 1),/2 = (A + .4'%4'2 - a2)'/2. (3.7)
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The initial values of A and A' depend, of course, on the original velocity and orientation

of I.
The prototype planes through the origin satisfy

t)xt = 0. (3.8)

Join the velocity field (3.5), (3.8) to uniform flows at both ends. Let s be any streamline

not on (3.1) which does not intersect the envelope of the prototype planes, defined by

Xi = rn,(p), riin'i = n,w'/ = 0, n,n, = 1. (3.9)

Such streamlines exist if (3.1) and (3.9) do not intersect. As the second wall of the trough,

also composed of plane and conical segments, choose the cone through s with vertex P.

A special example of this type of flow can easily be derived from a Prandtl-Meyer flow.

Retain as one side of the trough the plane walls of the original boundary, and use a

conical stream sheet for the other wall.

4. A conical simple wave. Insert a half plane into a uniform supersonic flow at a

moderate angle of attack, and make the angle between the leading edge and the un-

disturbed velocity greater than the Mach angle. On one side there will be a swept Prandtl-

Meyer flow around the leading edge. On the other there will be an attached plane shock

wave behind which there will be uniform flow (supersonic if the angle of attack is not

too large) parallel to the half plane. Throughout the entire flow the component of velocity

parallel to the leading edge is constant. Introduce a coordinate system with origin on the

leading edge, z-axis parallel to the undisturbed velocity, j/z-plane parallel to the uniform

flow behind the shock, and hence normal to the shock. Discard that part of the flow on

the side of the yz-plane that contains the downstream half of the leading edge. Reflect

the remainder with respect to the yz-plane. So far the boundary, shown in Fig. 1 together

Figure I Shock and Tentative Boundary

with the shock, consists of a dihedral angle with congruent sectors removed from each

face. Since the two halves of the shock are coplanar, the uniform flows on the compression
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side join continuously. On the expansion side w, is double valued in the ?/2-plane. This

difficulty can be avoided by modifying the upper side of the boundary as follows.

First, examine the hodograph of the swept Prandtl-Meyer flow. In Fig. 2 let ON*

Plane IT

Normal to

Leading Edge

\ Leading
Edge

Figure 2 Hodogroph of Swept

Prandtl-Meyer Flow

be the undisturbed velocity in the yz-plane, and let N be the projection of AT* onto the

plane II that passes through the origin and is normal to the leading edge. During the

expansion, the component of velocity normal to II remains equal to NN* while the

component parallel to II traces an arc NE of a Prandtl-Meyer epicycloid, shrunk by a

factor (1 — NN*y/2. Fig 1 shows that the z-axis is under the plane boundary, so the

angle AOE is acute. Hence the epicycloidal arc XE cannot have another intersection

with the line NS, parallel to OA. Now construct the hodograph by subjecting every

point of NE to the displacement NN* Clearly, during the expansion from ON* to OE*

the angle between the velocity vector 0 U* and the ?yz-plane (II) steadily increases

(decreases).

Now let A be the intersection of x = 0 and the plane Mach surfaces that pass through

the leading edges and are based on the undisturbed velocity. Let P be any point on A.

From the nature of the hodograph it is clear that the streamline through P for the simple

wave in i i 0 turns immediately into x > (J and stays there. Hence an entire conical

stream sheet through A bends into x > 0. Thus it is possible to separate the two regions

of swept Prandtl-Meyer flow by means of a symmetrical conical fin, the thickness of

which increases with increasing sweep. Note that at the junctions of the fin and the

original boundary w,- is parallel to . Accordingly, near the corresponding points Xa

(2.11) is of elliptic type. On the other hand, for very large values of Xa near the boundary

(2.11) is of hyperbolic type.
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To obtain from this boundary a finite obstacle resembling an airplane, symmetrically

terminate the wing, as in Fig. 3, at a trailing edge which is supersonic with respect to the

uniform flows adjacent to both sides of the wing. On the lower side there will be an ex-

pansion around the trailing edges. The flow field just described will be unaffected up to

the first Mach surface in the expansion fan emanating from the trailing edges. In par-

ticular, the leading edge shock will cease to be plane at its intersection with this surface.

On the upper side there will be a shock attached to the trailing edges, ahead of which

Figure 3 Schematic Representation of Finite
Obstacle in Simple Wave Flow

the original flow will be unaltered. If the trailing edges are straight, as in Fig. 3, the

shock and immediately following flow for either half of the wing will be conical with

respect to the corresponding wing tip. Possible trailing edges for the fin would be its

intersections with the trailing edge shocks. If a thick wing is desired, the upper surfaces

need not be parallel to the lower surfaces. Finally the upper surfaces need not even be

plane, but may be cylindrical or even conical, with vertices at the wing tips. However,

after such changes the simple wave flows cease to be conical with respect to the origin.

5. Interaction of simple waves [2]. Return to the stage of the discussion at the end

of the first paragraph of Section 3. Examination of Fig. 1 shows that cross sections by

the planes z = ± 1 would have the appearances of Figs. 4 and 5. EK and EL are traces

u  r- c """"'HI UN CL...I.
Shock- —er:,noc'<

Mach Cone for Uio

Figure 4 Trace by Z = -l
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of the leading edges. The traces of the boundary and shock wave have been shown

mainly to clarify the preceding example. They really have no immediate bearing on the

interaction example, since it will be necessary to consider the possibility of having to

reduce the amount of expansion and the extents of the interacting simple waves. The

L Simple Wave R Simple Wave

f, Plane Shock& R tL

Uniform Flow Uio

Figure 5 Trace of Tentative Flow by Z*+l

boundary will actually be constructed later. The essential point is that the discussion

starts from simple waves in which all of the straight characteristics pass through the

centers ER or EL .

In Fig. 4 the simple waves have not begun to interact so the boundary need not be

altered for z < 0. In Fig. 5 they begin to influence each other along the characteristics

AB,t and ABL , shown in a magnified view in Fig. 6. Since the type of (2.11) is hyperbolic

L Centered Simple Waveaimpie wave

J Uniform Flow Uj0 t

R Centered Simple Wave

L Non-centered

Simple Wave

Uniform Flow U13

R Non-centered

Simple Wave

Figure 6 Interaction of Simple Waves
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at A, the characteristics actually extend some distance beyond A as shown. In the

simple waves ua and w are known on ABR and ABL . Hence f> and d$/dXa are known

by (2.9). The characteristic initial value problem for (2.11) with these initial data will

have a unique solution in some sufficiently small characteristic quadrilateral ABRCBL ,

where C may be assumed to be on the F-axis. Since the initial data are symmetrical

with respect to the F-axis, so is cf>. Extend $ beyond BKC as the velocity potential of a

conical simple wave. In general, the corresponding straight characteristics will not be

centered. However, if the double wave A BlcCB,, is kept small enough, their envelope

and intersections can be kept arbitrarily close to E L , well beyond the boundary to be

constructed later. Between the two simple waves in X > 0 there falls a region of uniform

flow with the velocity ui2R of B,t . Extend the definition of $ symmetrically with respect

to the F-axis. Finally, between the two non-centered simple waves there falls a region

of uniform flow with the velocity ui3 of C.

It remains to choose a boundary in z > 0. First let U0 , U2h , l'2L , and U denote

the points where rays from (0, 0, 0) parallel to ui0 , ui2K , ui2L , and ui3 intersect z = 1.

Let Gr a>, starting from the right edge of the right hand non-centered simple wave, be

on the line ERU2R . Then wl2fi is tangent to the corresponding plane through the origin.

Let FrGr be an integral curve of the equation dX/(u — wX) = dY/(v — wY) of conical

stream sheets. The final part of the boundary in X > 0 consists of the segment FRU3

which corresponds to a plane to which u, is tangent. Extend the boundary symmetrically

into X < 0.

Note that near U3 (2.11) is of elliptic type.

It is interesting to observe that an alternation of double waves, simple waves, and

regions of uniform flow similar to that in Fig. 6 also appears in an intersection of simple

waves which occurs when uniform plane supersonic flow expands into an infinite sector.

This is shown schematically in Fig. 7.

Figure 7 Schematic Representation

of Interaction of Plane Simple

Waves in Divergent Channel
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